
Technical Report 1493 

SodaBot: 
A Software Agent Environment 

and Construction System 

Michael H. Coen 

MIT Artificial Intelligence Laboratory 

, ~-^S :ls^ H?* %w*   $    U^   * "| 

19950125 141 
e, .-»•. i *#** 

anr^ö»N«^A 



REPORT   DOCUMENTATION   PAGE Form Approved 

OBM No. 0704-0188 
Pubic reporting burden tor this collection ot information is estimated to average 1 hour per response. Indudng the lime tor reviewing instructions, searching existing data sources, gathenng; 
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect orf this collection of information, 
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, 
VA 22202-4302, and to the Office of Management and Budget Paperwork Reduction Project (0704-0188), Washington, DC 20503. __ 

nT 

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 
June 1994 

REPORT TYPE AND DATES COVERED 
technical report 

4. TITLE AND SUBTITLE 
SodaBot: A Software Agent Environment and Construction System 

6. AUTHOR(S) 

Michael H. Coen 

5. FUNDING NUMBERS 

IRI-9357761, 
N00014-91-J-4038 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Massachusetts Institute of Technology 
Artificial Intelligence Laboratory 
545 Technology Square 
Cambridge, Massachusetts 02139 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

AI-TR 1493 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

Office of Naval Research 
Information Systems 
Arlington, Virginia 22217 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

None 

12a. DISTRIBUTION/AVAILABILITY STATEMENT 

DISTRIBUTION UNLIMITED 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 wordä) 

This thesis presents {Vm SodaBot}, a general-purpose software agent 
user-environment and construction system. Its primary component is 
the 0>em basic software agent} — a computational framework for 
building agents which is essentially an (\em agent operating system}. 
We also present a new language for programming the basic software 
agent whose primitives are designed around human-level descriptions of 
agent activity. Via this programming language, (Vm users can easily 
implement a wide-range of typical software agent applications}, e.g. 
personal on-line assistants and meeting scheduling agents. The 
SodaBot system has been implemented and tested, and its description 
comprises the bulk of this thesis. 

14. SUBJECT TERMS 

software agents, agent programming 
15. NUMBER OF PAGES 

77 

16. PRICE CODE 

17. SECURITY CLASSIFICATION 
OF REPORT 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

20. LIMITATION OF 
ABSTRACT 

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED 
Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. 239-18 
298-102 

NISN 7540-01-28Ü-ÜM) 



MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
ARTIFICIAL INTELLIGENCE LABORATORY 

A.I. Technical Report 1493 June, 1994 

SodaBot: A Software Agent 
Environment and Construction 

System 

Michael H. Coen 
mhcoen@ai.mit.edu 

This publication can be retrieved by anonymous ftp to publications.ai.mit.edu. 

Copyright © Massachusetts Institute of Technology, 1994 

This material is based upon work supported by the National Science Foundation under National 
Science Foundation Young Investigator Award Grant No. IRI-9357761. Any opinions, findings, 
conclusions or recommendations expressed in this material are those of the author and do not 

necessarily reflect the views of the National Science Foundation. The research described here was 
conducted at the Artificial Intelligence Laboratory of the Massachusetts Institute of Technology. 
Support for the laboratory's artificial intelligence research is provided in part by the Advanced 

Research Projects Agency of the Department of Defense under Office of Naval Research contract 
N00014-91-J-4038. 



SodaBot: A Software Agent Environment and Construction 

System 

by 

Michael H. Coen 

Submitted to the Department of Electrical Engineering and Computer Science 
on May 13, 1994, in partial fulfillment of the 

requirements for the degree of 
Master of Science in Computer Science and Engineering 

Abstract 

This thesis presents SodaBot, a general-purpose software agent user-environment and 
construction system. Its primary component is the basic software agent — a compu- 
tational framework for building agents which is essentially an agent operating system. 
We also present a new language for programming the basic software agent whose 
primitives are designed around human-level descriptions of agent activity. Via this 
programming language, users can easily implement a wide-range of typical software 
agent applications, e.g. personal on-line assistants and meeting scheduling agents. 
The SodaBot system has been implemented and tested, and its description comprises 
the bulk of this thesis. 

Thesis Supervisor: Lynn Andrea Stein 
Title: Class of 1957 Assistant Professor of Computer Science 



Acknowledgments 

Yikes! It's erev Shabbos and I have to run and turn my thesis in! So, who has time 

to think about everyone to thank? Well, here's a list of those who come to mind in 

the 3 minutes I have to write this! 

Professor Lynn Stein is a real mench, i.e. a good person. Where does she get the 

energy to provide so much support to so many students?! Needless to say, I'm quite 

happy to have her as my advisor. 

This thesis was supposed to be about philosophical issues in knowledge repre- 

sentation, but Bart Selman and Henry Kautz got me interested in software agents 

last summer at AT&T Bell Labs. Will I ever get back to reading Wittgenstein? 

Chris Ramming provided thoughtful comments to earlier drafts of this thesis. Steven 

Ketchpel provided much comraderie while we worked at AT&T. 

Robyn Kozierok tested much of the SodaBot system and provided voluminous bug 

reports. 

My family always provides much love and support. I dedicate this thesis to my 

grandmother, Dora Estrin. 

My friends have all helped in their own ways, some by getting me to work and 

some by getting me to stop. In particular, I thank (in lexicographic order): Andy, 

Debbie, Jeff, Sarah, Stacy, Upendra, Ye, and Yuri. 

JustiJTieatiös» 

a 
D 

By—^  

AvallsMllty Co<$>3 

\J 

—™JL, 



Contents 

1 Introduction 8 

1.1 Software Agent?  9 

1.2 The Problem  11 

1.3 Towards a solution  13 

1.3.1 The SodaBot Software Agent Paradigm  13 

1.3.2 The Software Agent Programming Language  17 

1.3.3 Automatic Agent Distribution  18 

1.4 Reader's Guide  19 

1.4.1     SodaBot agents written in SodaBotL for a BSA?  20 

2 The Basic Software Agent Paradigm 22 

2.1 BSA Installation      22 

2.2 The Basic Software Agent  24 

2.2.1 The Basic Software Agent Internals  27 

2.2.2 Agent Configuration  29 

2.3 The Benefit  30 

3 Distributed Agents in SodaBot 32 

3.1 The Anatomy of an Agent  33 

3.2 A Sample Distribution   .......................... 36 

3.3 Network Topology    ............................ 37 



CONTENTS 5 

3.4 What's the Risk?  39 

3.5 The Benefit  40 

4 Writing SodaBot Agents 41 

4.1 Agents Describe Dialogs  41 

4.2 SodaBotL Reference Manual  44 

4.2.1 SodaBot File Hierarchy  45 

4.2.2 Variables  46 

4.2.3 Conditionals ............................ 47 

4.2.4 Writing a Mail Filter  47 

4.2.5 Writing an Agent  48 

4.2.6 SodaBotL Primitives  51 

4.3 The Benefit  54 

5 Software Agents 55 

5.1 What's an Agent?  55 

5.1.1 Software agents are on-line pseudo-people      56 

5.1.2 Software agents are a testbed for other realms in Core AI.    . . 57 

5.1.3 Software agents are intelligent on-line assistants  58 

5.1.4 Software agents are negotiators  59 

5.1.5 Other Points of View . . . .:  60 

5.2 Agency Defined  61 

5.3 SodaBot's Motivation  62 

5.3.1    The VisitorBot .'  62 

6 Conclusions 65 

6.1 SodaBot's Report Card  65 

6.2 Closing Summary  69 

A  Details of the Current Implementation 70 



CONTENTS 6 

B  SodaBotL BNF Specification 71 



List of Figures 

1-1 The Basic Software Agent  15 

1-2 The BSA running on a Unix workstation  15 

1-3 A simple agent for gathering opinions  18 

1-4 The Pollster window  18 

2-1 The SodaBot basic software agent architecture  25 

2-2 Mail handling in the BSA      26 

2-3 A SodaBot mail filter  27 

3-1 The generic SodaBot agent anatomy      34 

3-2 Distribution of the Pollster agent  37 

4-1 A SodaBot authorize agent for approving document publication    ... 43 



Chapter 1 

Introduction 

This thesis is about creating software agents. We argue that software agents should 

be written using a vocabulary not provided by traditional programming languages — 

it should be possible to create agents solely by specifying their abstract behavior. 

Motivated by this position, we introduce SodaBot, a general-purpose software 

agent user-environment and construction system. Its primary component is the basic 

software agent — a computational framework for building agents which is essentially 

an agent operating system. We also present a new language for programming the basic 

software agent whose primitives are designed around human-level descriptions of agent 

activity. Via this programming language, users can easily implement a wide-range 

of typical software agent applications, e.g. personal on-line assistants and meeting 

scheduling agents. The SodaBot system has been implemented and tested, and its 

description comprises the bulk of this thesis. 

This introduction is divided into the following sections: 

(1.1) What is a software agent in the first place? 

(1.2) What research problems motivated this work? 

(1.3) What is the SodaBot system and how does it solve these problems? 

(1.4) A reader's guide to the remainder of the thesis 



CHAPTER 1.   INTRODUCTION 9 

1.1     Software Agent? 

The beginning is always a good place to start, so what exactly is a software agent? 

The answer depends on whom you ask and can vary quite widely. (See chapter 5 

for some typical responses.) For the purposes of this thesis, however, we will focus 

exclusively on creating two specific types of software agents: (1) personal assistants 

and (2) application agents.1 First, we examine some typical high-level characteristics 

these two groups have in common, and then-we look at several representative agents 

from each. 

Agents in the Abstract 

Agents are autonomous and temporally continuous.2 Agents can act in behalf of par- 

ticular people, i.e. they can take actions which appropriately represent the interests of 

others; therefore, agents must also be robust and capable of securely handling private 

information. Agents tend to be highly interactive — they spend much of their time 

communicating with other agents and human beings. Agents are active participants 

in their computational universe, i.e., they react to and cause changes in overall system 

state. 

Agents in the Concrete 

Agents are practical and helpful. We are particularly interested in the construction of 

software agents that automate simple on-line, repetitive and time-consuming tasks. 

Although we are interested in using software agents as a "testbed" for other areas in 

core AI ([Etzioni, 1993]), we must keep in mind that "one of the most challenging 

aspects of agent design is to define specific tasks that are both feasible using current 

technology and are truly useful..."([Kautz et a/., 1994]) 

although, much of our discussion applies to other types of agents as well. 
2In this particular sense, they are similar to Unix daemon processes, but agents are generally 

associated with particular people or high-level applications. 



CHAPTER 1.   INTRODUCTION 10 

We focus here on building the following two types of software agents: 

1. personal on-line assistants: These agents generally belong to particular people 

and act like simple electronic secretaries. They do things such as: 

a) automatically respond to requests to schedule meetings by consulting 

their owner's private schedule; 

b) keep track of their owner's whereabouts and provide this information on 

request; 

c) contact their owner appropriately based on her location, e.g. via display- 

ing a window on her workstation, sending a fax, or even making a phone 

call (SodaBot can't telephone yet, but see [Kautz et a/., 1994].) 

d) filter and sort incoming e-mail and faxes based on their owner's prefer- 

ences (which may be provided explicitly or someday learned from ob- 

served behavior.). 

2. application agents: These agents coordinate the transfer and processing of in- 

formation among people and other agents. Application agents include: 

a) Time schedulers which schedule group or individual meetings among 

a set of people by negotiating among their personal agents 

to maximize some "convenience" measure.[Maes and Kozierok, 1993, 

Dent et al, 1992, Kautz et al, 1994]. 

b) Text processing systems which allow complex processing of documents 

involving many people at different sites. 

c) Receptionist agents which accept requests and determine their appropri- 

ate destinations by interacting with other agents (and perhaps people as 

well).3 

It is important to remember that software agents are simply computer programs, 

like expert systems, text editors, etc. Sometimes, especially given the anthropomor- 

3This is work in progress with Randy Davis and Howie Shrobe. 



CHAPTER 1.   INTRODUCTION 11 

phic autonomy of agents, it is easy to lose track of this and disconnect expectations 

from reality. However, one must keep in mind that what other programs cannot yet 

do, e.g. converse in English, agents cannot yet do either. Nevertheless, throughout 

this thesis, we will treat software agents as a unique class of computational entities 

— agents are paradigmatically distinct from other types of computer software. This 

outlook will direct how we intend for agents to be used and what types of tasks we 

expect agents to perform. 

1.2    The Problem 

Much of the work done in the area of software agents can be placed into one of 

two categories: (1) highly theoretical treatment of agents' intentions and capabilities 

([Shoham, 1993, Doyle et al, 1991,Etzioni et al, 1992a]); (2) applied construction of 

specific agents ([Etzioni and Segal, 1992, Maes and Kozierok, 1990, Vere and Bick- 

more, 1990, Dent et al, 1992, Kautz et al., 1993]). However, determining for what 

(and if) software agents are actually useful requires building many of them, and the 

agent construction process poses difficult technical challenges. 

It is generally straightforward to specify an agent's abstract behavior, e.g. "I want 

the agent to ask some user a question; it should remember her response in case the 

same question comes up again. Then, it should process the response by calling my 

preexisting C-language application on it and communicate the result to some other 

agent." However, traditional programming languages offer no primitive-level support 

for the typical kinds of high-level "online activities" in which agents engage, e.g. 

graphically obtaining structured, typed information from a user or communicating 

reliably with other agents. 

Building agents generally involves a multi-layered approach. First, it requires a 

great deal of specific "system-hacking," e.g., of esoteric system software, networking 

protocols, windowing systems.  (See [Kautz et al., 1994] for a discussion of the dim- 



CHAPTER 1.   INTRODUCTION - 12 

culties involved in handling the most basic of agent functions, e.g., reading e-mail reli- 

ably.) Second, agent construction frequently involves mid-level computational issues, 

e.g. having agents handle several events simultaneously, provide reliable transactions, 

or handle errors automatically. Finally, agents (usually) do something with their com- 

putational foundation. For example, researchers in artificial intelligence may want to 

implement agent-based schedulers or knowledge representation systems. 

Each of these layers can require a substantial amount of independent implementa- 

tion and debugging time. So much so, in fact, that very few software agents have yet 

been built. And although the need to simplify agent construction is obvious, there 

are as yet few systems designed to assist the agent creator. 

Additionally, it can be difficult to distribute new agents, i.e., to introduce them 

to the world and let other people use them. Agents tend to be site-specific in intri- 

cate ways and disconnecting them from their local dependencies can be technically 

involved. Furthermore, an agent which has been "disconnected" from its birth-site 

can also be quite challenging to install. 

Finally, in particular with software that handles sensitive information and may 

even represent the user in interactions with other people, a person needs an enormous 

amount of confidence that the software will operate correctly. For example, who is 

likely to ftp and install a random program capable of autonomously sending e-mail 

in their name? 

Thus, we see three problems with building software agents today: 

1. They are technically challenging to write in traditional programming languages 

and operating systems. 

2. They are difficult to distribute because they may have site-specific dependencies; 

for the same reason, they can be difficult to install. 

3. People may be uncomfortable with the amount of responsibility given to an 

unknown (and possibly buggy) agent. 



CHAPTER 1.   INTRODUCTION 13 

1.3     Towards a solution 

This thesis presents SodaBot, a general-purpose software agent user-environment and 

construction system. In this section, we introduce the SodaBot system and outline 

how it addresses the three aforementioned problems. 

The four primary components of SodaBot discussed below are: 

(1.3.1) The basic software agent 

(1.3.1) The graphical user interface 

(1.3.2) The SodaBot agent programming language 

(1.3.3) Automatic distribution of application agents 

1.3.1     The SodaBot Software Agent Paradigm 

In SodaBot, each user (or owner) is given a personal basic software agent (BSA) which 

typically runs in the background on her home workstation.4 The BSA is an agent 

operating system — think of it as the "Unix of the software agent world." By this, 

we mean that it is a generic (in the sense of universal) computational framework for 

implementing and running specific agent applications. The BSA is programmed in 

the SodaBot agent programming language (SodaBotL).5 As a quick sanity check, see 

if the following (rough) analogy makes sense: 

SodaBotL is to SodaBot the way C++ is to Unix. 

A BSA runs SodaBotL programs provided both by its owner and by other people. 

It implements a time-sharing scheduling algorithm, so only one BSA needs to be 

running to simultaneously execute several agent applications for a particular user — 

see figure 1-1.   The BSA runs an agent until it needs to wait for something, e.g. 

4The BSA can alternately be configured in several other ways. See section 2.1 
5 Pronounced "Soda-Bottle." 



CHAPTER 1.   INTRODUCTION 14 

user-input or communication from another agent. At this point, the BSA can put 

this agent to sleep and schedule another one in its place. 

The user and her BSA interact through the SodaBot graphical user interface 

(GUI). Figure 1-2 shows the GUI of a BSA running on a Sun Sparc workstation. 

In this setup, the GUI occupies one of several virtual screens available to the user. 

(However, it can open windows on whichever virtual screen the user has active.) The 

central window in the display contains the BSA's main interface; it allows the user to 

monitor and control the BSA's activity — including reviewing and limiting its access 

to system resources. The top of the screen displays the SodaBot agent editor which 

allows the user to create, compile, and install agent applications. The editor can also 

be used to inspect incoming agent applications provided by other people. Finally, 

the bottom of the screen contains several windows opened by various software agents 

running on the BSA. 

The GUI was designed to provide the user with a sense of control over her BSA; 

she can enable or disable various capabilities — e.g. having it modifying her e-mail 

file — depending on her confidence in it (or lack thereof). [Kautz et a/., 1994] makes 

clear that people are uncomfortable delegating absolute authority to software agents. 

By giving the user a large degree of control over agent activity, we hope to help 

assuage fears that the BSA will do something inappropriate or destructive. 

The BSA has a novel architecture which allows it to perform a variety of com- 

plex agent-oriented tasks such as: reliably handle e-mail; graphically and textually 

interact with users; handle multiple concurrent events; interact in site-specific ways 

with its computational environment (e.g. run other system software, speak with a 

fax machine, etc.).6 Typically, an individual software agent application must perform 

a number of these activities. However, robustly implementing such tasks typically 

requires a large programming effort and much esoteric system knowledge. Therefore, 

6Several other features of the BSA will only make sense after we have introduced more of the 
system and are therefore discussed below. 



CHAPTER 1.   INTRODUCTION 15 

SodaBot Programs 

Agent Input 

HS© !S   S1 © 

User's BSA 

Figure 1-1: The Basic Software Agent 

U   =  fax 
[»3   = e-mail 

©   = other agents 

Figure 1-2: The BSA running on a Unix workstation 



CHAPTER 1.   INTRODUCTION 16 

the BSA comes with them "built-in," and the SodaBot agent programming language 

offers high-level primitives through which they can be accessed. 

What does the BSA buy us? It essentially disconnects agent programs from the 

specific computational environment in which they run. They no longer need to be 

"hard-coded" with specific parameters for particular activities, e.g. they don't require 

special knowledge of a host's mailer set-up. The problem of configuring many software 

agents is reduced to the problem of configuring a single agent, the BSA. Thus, for 

example, SodaBot agent programs written at MIT could be run without modification 

on BSAs at AT&T Bell Labs.7 Furthermore, when a Macintosh or PC-based BSA 

is created, agent programs running on Unix-based BSAs can be run directly on Mac 

and PC-based BSAs.8 Also, the BSA takes advantage of empirical knowledge we 

have gained installing various software agents on several Unix configurations, and it 

attempts to automate its own installation. 

The BSA paradigm also assists in the development of user confidence in agent 

applications, because the BSA provides the only interface to critical system com- 

ponents. For example, if the BSA knows how to provide event time-outs or how to 

communicate correctly over TCP/IP, application agents running on the BSA do also.9 

Finally, there is a simple computational efficiency gain by having only a single BSA 

image in memory rather than several independent agent programs. The atomicity of 

agent execution enforced by the time-sharing model can also simplify interaction 

among several separate agent applications. 

7In fact, BSAs automatically distribute sections of new agent programs. Therefore, this property 
is essential for providing guarantees of correct behavior. 

8This assumes, of course, that they are not Unix dependent because a non-portable SodaBotL 
System call. However, even in this case, an agent can be divided into various sections, some of which 
run in Mac and PC-based environments and others which run exclusively in Unix environments. See 
section 3.1 

9Of course, simply knowing how to use something doesn't provide any guarantee of the appro- 
priateness of a particular use. We discuss this topic in greater depth in section 3.4. 



CHAPTER 1.   INTRODUCTION 17 

1.3.2    The Software Agent Programming Language 

The SodaBot agent programming language (SodaBotL) offers high-level primitives 

and control-structures designed around human-level descriptions of agent activity. 

SodaBotL abstracts out the low-level details of agent implementation. In a typical 

Unix environment, for example, SodaBotL frees agent creators from the bother of 

dealing with system calls, mail servers, sockets, and X-windows. It is therefore much 

easier to have an agent: 

1. Ask a question: 

Ask {prompt "Time"} "Wien are you returning?"; 

2. Display a message: 

Display {prompt "Read it?"; Choices(yes, no)} "Mail from $sender: Ssubject"; 

3. Contact another agent: 

Contact Agent <Receptionist; querier> {users: Sinferred} 

"Do you know who in the AI Lab is responsible for Stopic?" 

4. Handle time: 

Wait until Tuesday before $date: { 

Display "Reminder, you have an appointment with Sperson on $date";} 

The SodaBot language design focuses specifically on building two kinds of software 

agents: (1) personal assistants - Each user has a private SodaBot basic agent which 

she can customize to act as a simple electronic secretary. A user can program her agent 

in SodaBot to do things such as: filter incoming e-mail; notify her about particular 

events (e.g. someone has returned to his office); or automatically handle incoming 

requests. Users and other agents can also contact someone's personal assistant much 

in the same spirit one would a human secretary.10 (2) application agents - Users can 

create agents that specifically provide various services.   Application agents are also 

10We have also been considering the development of personal assistants for mobile robots which 
would provide on-line remote access to them. 



CHAPTER 1.   INTRODUCTION 

Agent{Pollster}: 
Get Response {prompt "And what's your opinion?"; 

timeout in 10 minutes} 
$message_body; 

Reply with Sresponse; 

Figure 1-3: A simple agent for gathering opinions. 

Pcllstar Message from Gary Borthardt 

The following Is the tentative schedule 
for this year's Al Seminars, we are sol 
before v« Issue invitations. Not«: thei 
particularly strong interest this year i 
researchers in Software Agents: 

Alan Turing 
John von Keunann 

Xad vh«'< year opinion? 

Hou about Kurt Godel?| 

Figure 1-4: The Pollster window. 

called SodaBots. For example, figure 1-3 has a simple Pollster agent. This agent 

allows us to quickly solicit opinions from a group of people by directing a Pollster 

message to their personal agents. 

1.3.3    Automatic Agent Distribution 

A SodaBot environment is composed of a society of basic software agents which are 

connected via the Internet (and/or a local area network). Within an environment, 

new application agents are automatically distributed — as SodaBotL programs — 

among its constituent BSAs. For example, suppose Robyn creates a group meeting 

scheduler. When she schedules the first meeting, the basic software agents owned 

by the people in her group will automatically request their required sections of this 

application agent from her BSA. Note that SodaBot does not enforce a client/server 

model of agent interaction. Sections of an agent's program are distributed as the need 



CHAPTER 1.   INTRODUCTION 19 

arises, and the "server" role in an agent might dynamically rotate among the basic 

agents or might not exist at all. 

Additionally, SodaBotL allows for context-dependent interpretation of its prim- 

itives based on their run-time environment. Primitives are requests to perform an 

action that do not actually specify how the action should be done.11 For example, a 

request in an agent's program to display a message can be satisfied by one (or more) 

of the following, depending on the owner's location: (1) put up a window on the 

user's display; (2) e-mail the message to the user; or (3) fax it to her, etc. 

Finally, because SodaBotL agent programs can be much shorter than their coun- 

terparts written in other systems, e.g. C on a Unix platform, they are that much 

easier to debug and inspect for security threats. For example, while it may not be 

possible for a user to peruse a random agent program she ftp'ed from somewhere 

on the Internet, it is quite feasible that she can inspect in detail a SodaBotL agent 

received by her BSA. (Security issues are discussed in section 3.4) 

1.4    Reader's Guide 

The remainder of this thesis discusses the SodaBot system and how it simplifies the 

construction of software agents. We do not propose that SodaBot is a universal agent 

construction tool or that its level of support is sufficient for all or even many applica- 

tions. However, central to the design of SodaBot is that all of its main components are 

separate, replaceable modules. If some capability is not provided or if some feature is 

inappropriate for a particular site, that part can be added or replaced while treating 

the rest of the system as a black-box abstraction. Also, particular SodaBot modules 

can be incorporated into other programs.  For example, an application which needs 

n[Kautz et al, 1994] describes this as "intension" vs. "extension," (i.e. "connotation" vs. "deno- 
tation"). It is not clear this terminology (drawn from linguistics) accurately describes the intended 
phenomenon. At least with respect to SodaBot, context-dependency is simply with respect to the 
medium for conveying information; the information explicitly must be made available, but the BSA 
may select precisely how. 



CHAPTER 1.   INTRODUCTION 20 

to receive and filter e-mail can use just these parts of the SodaBot system. Finally, 

SodaBot can be used to get fast, working prototypes of software agents, even if it is 

intended that the final application be completely written, say, in Lisp or C. 

To summarize, SodaBot provides the following capabilities: 

1. simple, fast construction of application agents and personal assistants 

2. support for complex human/agent and agent/agent communication 

3. automated distribution of new agents 

4. a wide-range of default behaviors for "typical" situations 

Chapter 2 introduces the SodaBot software agent paradigm, i.e., essentially, what 

we mean when we talk about an agent. We introduce the automated distribution 

of application agents in chapter 3. The SodaBot agent programming language is 

presented in chapter 4: first, by way of example, and then through a more formal 

specification. How SodaBot relates to other current software agent research is exam- 

ined in chapter 5. Finally, we evaluate the system in chapter 6. 

1.4.1     SodaBot agents written in SodaBotL for a BSA? 

The reader may be quite pleased that this document contains no first-order predicate 

calculus. Even so, there is the risk that some of the new terms defined here may cause 

confusion. To dispel any perplexity, we offer the following guide: 

• SodaBot is a software agent user-environment and construction system. 

• A SodaBot is a software agent implemented in SodaBot. 

• SodaBotL is the name of the programming language for building software agents 

in SodaBot. 

• The Basic Software Agent (BSA) is the foundation users build upon to create 

personal assistants and application agents. It is a basic agent operating system. 



CHAPTER 1.   INTRODUCTION 21 

• A personal assistant is a simple electronic secretary. It runs on a user's BSA. 

• An application agent is an agent which performs a specific task. It runs among 

the BSA's that comprise a SodaBot environment. 

• A SodaBot environment is composed of a group of basic software agents which 

communicate with each other (via E-mail, TCP/IP, etc.) 

• An owner or user is the human being directly associated with a particular BSA. 



Chapter 2 

The Basic Software Agent 

Paradigm 

This chapter details the computational foundation of the SodaBot system — the 

basic software agent. We first examine various configurations for running the BSA. 

We then detail the behavior and architecture of the BSA along with issues that arose 

during its implementation. Finally, we discuss the benefits provided by the BSA 

to software agent creators. Although this chapter primarily addresses Unix-specifics 

of the SodaBot system, presumably parallels exist in the PC world to much of this 

discussion. 

This chapter is divided into the following sections: 

(2.1) BSA Installation 

(2.2) BSA Behavior and Architecture 

(2.3) What's It Good For? 

2.1     BSA Installation 

SodaBot can be configured to run in one of several ways: 

22 



CHAPTER 2.   THE BASIC SOFTWARE AGENT PARADIGM 23 

1. The BSA can run as a constant background job on some workstation — usually 

(although not necessarily) the user's home workstation. This way, it is always 

ready to respond to incoming requests, and if permitted, it can take actions 

without the user's explicit approval. This configuration does not tie the BSA 

to a particular display if the site permits "xhosting" to other machines; in this 

case, the user can simply notify her BSA of her current location. This is the 

default and simplest way to configure SodaBot. 

2. The BSA can be run when the user logins and terminated when the user logs out. 

This option is appropriate if the user is uncomfortable leaving SodaBot running 

in her absence or if option (1) causes technical complications, e.g., "xhosting" 

is not permitted and she moves around frequently. This configuration disallows 

certain interactions, e.g., TCP/IP connections from other agents, when the user 

is not logged in. 

3. The BSA can be started dynamically only when there is: incoming e-mail, 

an incoming fax, a TCP/IP connection from another agent, etc. Unlike with 

options (1) and (2), configuring SodaBot for this behavior can be quite difficult 

and setting up the system requires "user-wizardry." (It generally requires root 

access as well.) 

For option (1), the user does nothing more than start her BSA by typing "Soda- 

Bot" at the Unix prompt. The first time it is run, SodaBot creates a directory hi- 

erarchy in ""/.sodabot/" that holds the user's agent files and personal configuration 

information, such as the name of her home display. The BSA also tries to determine 

site and organization-specific information such as the location of mailer files, system 

libraries, and the name of institution.1 It may have to ask the user several questions 

during installation, but in the current implementation this process is not generally 

1 Institution name can be guessed from the IP address although the current table of known 
addresses is very small — just the MIT AI Lab and AT&T Bell Labs. 



CHAPTER 2.   THE BASIC SOFTWARE AGENT PARADIGM 24 

interactive. Option (2) merely requires that the user start option (1) and "quit" the 

BSA whenever she logs out. The BSA's starting and stopping can also be performed 

by her .login and .logout files respectively. The remainder of this thesis assumes the 

BSA has been installed with either the first or second option. While we have done 

much experimentation with option (3), the vast array of extant Unix configurations 

today makes it simply too difficult to automate installation, and the skills required for 

custom installation are beyond the capabilities of most users.2 More technical details 

regarding agent configuration for options (1) and (2) are discussed in section 2.2.2. 

2.2     The Basic Software Agent 

When it is not running an application agent, the BSA spends most of its time sleeping. 

However, when idle, it periodically wakes up (e.g. every 5 seconds) and checks for 

(1) incoming e-mail; (2) user activity in the GUI; (3) a record "waking up" in one 

of the system databases; (4) completion of a system command invoked by the agent 

or its owner; or (5) contact from another agent.3 In order to insure responsiveness 

during user interaction, the GUI runs as a separate process (which responds to various 

X-windows events). 

Figure 2-1 shows the general SodaBot system architecture. The BSA is connected 

to available system resources, and all application agents access these resources through 

the BSA. Thus, for example, the BSA is solely responsible for displaying windows on 

the user's display and processing her e-mail. 

Because application agents do not directly access system resources, the BSA is free 

2If the user wants to try option (3), there is a seperate installation program which can automat- 
ically generate the (generally) necessary setuid-to-root "wrappers." However, the user will have to 
connect these wrappers to the system files manually. Also because a system's servers rarely honor 
setuid-to-root flags from remote clients, the installation program must be run directly on each server 
and the wrappers must be stored on one of the server's local disks. 

3The BSA's polling behavior when idle (i.e. waking up every few seconds) is no more CPU 
intensive than that of other popular Unix applications, such as xbiff, and it would seem to be a good 
deal less of a burden on system resources than the ubiquitous xload. The length of the sleep-wake 
cycle is adjustable by the user. 



CHAPTER 2.   THE BASIC SOFTWARE AGENT PARADIGM 25 

TCP/IP 
A 

Incoming Mail, 
Faxes 

From:.... 

From: .... 

From:.... 

' SodaBot Fame Aiient 

1) Incorporate program 
changes. 

2) Check for e-mail 
3) Listen on sockets 

s4) Examine databases 
w 

Databases: Sockets 

SodaBot Programs 

User specified Received from 
other agents 

Graphic Interface 
M«ssmB( tram lynn Andraasuln 

Do,«.«! tutfly} 

I 
^ Dona      |      ^ Dona/Mall       |      ■fr  lqnor« 

GUI System Delivery \ System 
1 

Agent 3 
/////////// 

Agent 1    \ Agent 2 
(                                  V 

Other Agents f \ 

Figure 2-1: The SodaBot basic software agent architecture 



CHAPTER 2.   THE BASIC SOFTWARE AGENT PARADIGM 26 

(Personal Assistant) 

Load Agenl •© 
Request Delivery 
of Agent 

Figure 2-2: Mail handling in the BSA 

at run-time to reinterpret their access requests. For example, suppose an application 

agent wants to display a message to the user, and the BSA knows that she is not at 

her workstation but is reachable by fax. It can alternatively fax the message to her 

in addition to (or instead of) displaying the message on her screen. This is dealt with 

in more detail in section 1.3.1 in the chapter covering SodaBotL. 

Work on a system TCP/IP connection for agent-to-agent communication is just 

beginning. It will help alleviate the bottleneck caused by relatively slow e-mail deliv- 

ery and it will allow new or cautious users to configure the BSA so that application 

agents can run without accessing their e-mail. When faced with network "fire-walls" 

or with temporary network failures, however, the BSA will be able to resort to using 

e-mail for inter-agent communication.4 Also, note that how messages are sent be- 

tween application agents is actually invisible to those agents; the SodaBotL Contact 

Agent primitive means send the message without specifying the transfer medium. 

The connection to the system mailer is the most complicated system resource link 

in SodaBot. (See section 2.2.2) In the standard configuration, the BSA and its owner 

share the same mailbox. Incoming e-mail can be intended for (see figure 2-2): 

1. The BSA's owner — In this case, it loads and runs her specified mail filters over 

each new message. (Figure 2-3 contains a sample filter.) 

4Communication via e-mail can also be quite useful for debugging agent applications because it 
is readable by a person, unlike TCP/IP data. 



CHAPTER 2.   THE BASIC SOFTWARE AGENT PARADIGM 27 

Mail filter: 
Received mail {from: /las/; subject: /funding/}: 
Display{prompt "Read now?"; choices(yes, no, check)} 

"Important mail from Lynn!: Ssubject"; 
if (choice(yes)) {Display Sbody;} 
elsif     (choice(check))    {System "finger Saddress"; 

Display Sresult;} 

Figure 2-3: A SodaBot mail filter 

2. A particular application agent — Mail can be directed to application agents by- 

including a special SodaBot header in the message, such as 

To: mhcoen@ai.mit.edu 

SodaBot: <Pollster> 

in which case it is directed to the named agent. The specification, partic- 

ularly in headers generated by other agents, can also include a particular 

"section" of the agent and a version number, e.g. "SodaBot: <Scheduler; re- 

quest-meeting; vl.0>" 

Agents can also be contacted via e-mail aliases. For example, the address 

"ScheduleBot@ai.mit.edu" can resolve to "mhcoen@ai.mit.edu." In this case, 

the BSA is given a list of (alias, agent) pairs which it uses to resolve the contents 

of the "To:" header into an application agent. 

3. The owner's personal assistant — By default, the personal assistant is named 

"user_name&oi@address," e.g. "mhcoenbot@ai.mit.edu." 

2.2.1     The Basic Software Agent Internals 

The BSA can be viewed as the kernel of a time-sharing agent operating system. 

SodaBotL programs are compiled into the BSA's native operating language which is 

directly interpreted by the BSA when it runs an agent. The compiled agent programs 



CHAPTER 2.   THE BASIC SOFTWARE AGENT PARADIGM 28 

are divided into multiple sections which can be stopped and restarted by the BSA's 

agent scheduler.5 

The agent scheduler allows the single-threaded BSA to respond to variety of con- 

current system activity. It is not reasonable for the BSA to spend large amounts 

of time waiting for an some event, e.g. user input or completion of an invoked ap- 

plication (e.g. a constraint-propagation package for an agent-based planner), at the 

expense of others. For example, the mail filter in figure 2-3 displays a message to the 

user and then it needs to wait for the user's response before evaluating the subsequent 

if-statements. SodaBot handles this required delay by putting the application agent 

or mail-filter to sleep until the user provides the requested input (or the message 

times out). Sleeping agents are stored in one of three sleeping agent databases where 

they wait for particular events to occur or for time limits to pass.6 

When a BSA receives input from the user interface, it checks the GUI database 

for a record waiting for this input. This record would contain: (1) the name of the 

sleeping agent; (2) the position in this agent at which to resume processing; and (3) 

the data the agent was running on, e.g. an e-mail message and the agent program's 

local state. If the appropriate record is found, its corresponding agent is then reloaded 

and continues running until completion or until the next expression which causes it 

to wait. 

The BSA also has a database for dealing with the SodaBot "system" command, 

which can be used to access local software, e.g., the "finger" command, LaTeX, 

ghostscript, etc. The system command can take an arbitrary amount of time to 

finish, so the BSA creates a separate process to run the specified command and puts 

the agent to sleep in the system database.  The BSA will continue with some other 

5SodaBot is written in Perl, Extended TCL/TK, and C. This part of the system is implemented 
in Perl, a language which provides little support for this type of non-local program flow. In order 
to permit it, agent programs get divided into many individual procedures, each of which must be 
called in order to execute the agent. Thus, we can interrupt an agent's execution by pausing between 
subroutine invocations. 

6Mail filters are actually run by the internal mail filter agent which can also be placed in one of 
the sleeping agent databases. 



CHAPTER 2.   THE BASIC SOFTWARE AGENT PARADIGM 29 

activity. When it hears that the command has completed (over a Unix-style socket), 

the BSA will reload the sleeping agent with the command's output stored in the 

$result variable. 

The third database is for incoming messages which have been directed to an 

unknown application agent. When e-mail is sent to an agent that the BSA does 

not know about, the BSA requests that the specified agent be supplied either by 

the original sender or by a central agent depository. Until that agent arrives (as a 

SodaBotL program), the mail is held in the delivery database. Automatic distribution 

of agents is discussed in chapter 3. 

Agents can specify maximum lengths of time they are willing to spend sleeping in 

a database. After this timeout expires, the agent is restarted at some specific error- 

recovery or expired-timeout point where it can take remedial or default action, such 

as re-sending a request or notifying its owner of the problem. Certain error-recovery 

protocols are built-in to SodaBot, such as recovery from failure to receive requested 

agent programs. 

2.2.2    Agent Configuration 

The user can configure the BSA based on both her preferences for its behavior (see 

section ) and the amount of confidence she has in its correct operation. For example, 

once the BSA has the ability to communicate directly via TCP/IP, it will be capable 

of running without accessing the user's e-mail if she so desires; additionally, the BSA's 

ability to run local software can be greatly curtailed or eliminated. It seems quite 

essential, particularly because SodaBot is a new and experimental system, that we 

provide people with a minimally risky way of using it. Thus, the BSA's connections 

to specific system resources can be temporally or permanently disabled. As the user 

becomes more comfortable with the system, she can selectively re-enable features. 

Users can also determine precisely how the BSA, if permitted, processes their e- 

mail.  This is actually a rather complex issue, and there are many technical details 



CHAPTER 2.   THE BASIC SOFTWARE AGENT PARADIGM 30 

that are not sufficiently interesting to document here. For example, there are (too) 

many ways to connect a BSA to the system's mailer. The simplest way is for the 

BSA and its owner to share the same mailbox file. In this case, we would like the 

BSA to quickly remove its messages from this file so the sharing is transparent to 

the user. However, in Unix, there are certain file locking problems on distributed file 

systems which could cause a program that writes to a mail spooler file to clobber 

incoming mail.7 In response to this problem, SodaBot's default configuration does 

not write user-messages back to the spooler file after it removes mail intended for 

the BSA. Thus, the user needs to obtain her new messages from somewhere other 

than the system-mailer's spool file; therefore, she must explicitly provide a location 

for this new spool file, and inform her mail-reader of its existence.8 It is also possible 

for the BSA to have its own e-mail address (as done in [Kautz et al, 1994]), but on 

some systems this can require root access to set up. 

2.3     The Benefit 

The basic software agent provides preliminary solutions to the three problems outlined 

in section 1.2 with software agent construction. More importantly, it is a foundation 

for other components of the SodaBot system, e.g. SodaBotL, to more completely 

address these issues. 

1. Software agents can be technically challenging to write in traditional program- 

ming languages and operating systems: 

• We discussed earlier the three coding-layers typically involved in software 

agent construction: (1) low level, e.g. networking; (2) mid level, e.g. error 

handling; and (3) high level, e.g.   knowledge representation.   The BSA 

7The problem here is quite technical — it involves the distinction between lockf(3) and fcntl(2v) 
— and occurs only very rarely, but I have verified its existence with local GNU mail-wizards. 

8If she prefers, the user can have her BSA write back to the mail-spooler file. The risks are no 
greater than if she did so herself using one of the more popular mail reading programs. 



CHAPTER 2.   THE BASIC SOFTWARE AGENT PARADIGM 31 

helps free the agent creator from the first two of these efforts so that she 

can concentrate on the third. It pushes system-specific aspects of agent 

creation beyond the abstraction barrier. 

2. Software agents are difficult to distribute because they may have site-specific 

dependencies; for the same reason, they can be difficult to install. 

• The BSA disconnects application agents from the specific computational 

environment in which they run. Agent programs no longer need to be 

"hard-coded" with site-specific information. 

• This disconnection makes it easy to move agents around. They don't need 

to be disconnected from their "birth-site" or hooked-up to anything when 

being installed. 

• The problem of configuring many software agents is reduced to the problem 

of configuring a single agent, i.e., the BSA. 

• The BSA has knowledge of several standard Unix configurations and tries 

to automate its installation. 

3. People may be uncomfortable with the amount of responsibility given to an 

unknown (and possibly buggy) agent. 

• The BSA allows the user to gradually establish confidence in its behavior 

and to selectively disable and enable access to specific system resources. 

• The agent-system disconnection allows the BSA to reinterpret at run-time 

requests for system resources from application agents. Users can therefore 

customize the behavior of application agents without actually modifying 

them. 

• The BSA provides a stable agent-framework over which the user can exert 

ultimate control. 



Chapter 3 

Distributed Agents in SodaBot 

In SodaBot, an application agent generally doesn't run as a single program on a 

particular basic software agent. Rather, various sections of an agent are automatically 

distributed to and run on the BSAs which comprise a SodaBot environment. The 

agent's activity is manifested by the coordinated interaction of these program sections. 

This chapter discusses how SodaBot agent programs are structured and how they 

are distributed. We are concerned here only with how SodaBotL programs are orga- 

nized and how they move around the network, not with what they actually do (or 

"mean") once they arrive at their destination. It might seem a little odd to discuss 

how SodaBotL programs travel before saying what it is they actually do. However, 

because understanding agent distribution is fundamental to writing a SodaBot agent, 

we present it before detailing SodaBotL's semantics (in Chapter 4). 

We also discuss several related issues, including SodaBot environment topology 

and security concerns inherent in any automated distribution/installation of software. 

Security against malicious adversaries was at best a peripheral consideration during 

the design of the current implementation of SodaBot. However, it is a very interesting 

research topic and one we hope to explore in the future. 

32 



CHAPTER 3.   DISTRIBUTED AGENTS IN SODABOT 33 

3.1     The Anatomy of an Agent 

A SodaBot environment is formed by a group of basic software agents which coopera- 

tively implement an application agent. These agents may all be running on the same 

physical machine or they may be distributed across a network, each running (in the- 

ory) on a different operating system and platform. An individual BSA is most likely 

a member of several different environments, each expressing the unique connectivity 

required for a particular application agent. - 

SodaBotL programs are composed of (possibly overlapping) groups, where each 

group represents a different distribution of sections of the agent's program. Groups 

specify what role the agent requesting software is going to play in the execution of this 

agent. For example, the simplest group labellings might be "client" and "server;" one 

BSA might then contact another, "I need section X of agent Y," where section X is in 

the "client" group. Then all sections of agent Y in the "client" group would be sent 

out to the requesting agent; presumably, in its role as a "client," it will need access 

to the other sections of agent Y which also fall into this group. However, SodaBot 

doesn't enforce this model; agents can have more than two groups and individual 

BSAs can fall in more than one group. It may also not be computable a priori which 

BSAs will end up in which groups when the agent is running. As an agent gets added 

to more groups, it may have to issue additional requests to obtain the sections of the 

agent associated with them. 

Figure 3-1 outlines the generic SodaBot application agent structure. An appli- 

cation agent is divided into various sections (numbering corresponds to that in the 

figure): 

1. Global declarations — These are declarations which get distributed to every 

BSA running the agent. 

2. The main agent — This section specifies what happens when the agent gets 

invoked.   Notice there is no group expression specified here.   Presumably, a 



CHAPTER 3.   DISTRIBUTED AGENTS IN SODABOT 34 

Global Declarations 

Agent Agent_Name: 
1  Required Input   ■ 

l  
Body 

Request RequestJ: {groups groupJ,...} 

1  Required Input   \ 

]         Body           ' 

■*$     (1) 

.*&   (2) 

(3) 

^  (4) 

Figure 3-1: The generic SodaBot agent anatomy 



CHAPTER 3.   DISTRIBUTED AGENTS IN SODABOT 35 

BSA that requests this part of the agent needs all the other sections as well so 

that it can in turn distribute them. So, a BSA that requests the agent without 

specifying a group is sent the entire agent. The Required input specifies the 

format of the input which must be supplied to the agent. The body is a list of 

SodaBotL expressions. 

In the current implementation of SodaBot, agents can only be invoked via e- 

mail.1 For example, one might send the following structured message to the 

hypothetical Authorize agent (which will be presented more fully in section 4.1): 

To: authorize@ai.mit.edu as input to       Agent authorize: 
  Required input { 
Personl: las person 1: *username 
Personl: brooks person2: *username 
pathname: ~mhcoenftr.ps pathname: *pathname} 

Note that the structured input is in the body of the message, not its header. 

3. Request RequesiJ — Requests are atomic sections of agents which get dis- 

tributed to and run on members of its environment; essentially, an application 

agent's requests are simply what different BSAs can ask each other to do while 

running the agent; group membership simply determines which requests a BSA 

is allowed to issue. Note that each request must specify to which group(s) it 

belongs. One BSA can issue a request to another BSA by sending e-mail to its 

owner such as: 

To: las@ai.mit.edu 
SodaBot: <authorize; certifyy 
SodaBot-Parser: <l:l;s:0;e:35. l:2;s:18;e:13.> 

Michael H. Coen (mhcoen@ai.mit.edu) requests that you authorize 
the submission in "mhcoen/tr.ps 

aWe hope to soon also make them accessible via the graphic user interface. In a straightforward 
way, we can generate a graphic input-window based on the Required input specification. Most likely 
it will look very much like the form input type in Mosaic. 



CHAPTER 3.   DISTRIBUTED AGENTS IN SODABOT 36 

The "SodaBot-Parser:" header is used by the receiving BSA to determine where 

SodaBotL variables have been substituted into the message body by the agent 

that sent it. For example, the first argument in this case ($requester) is on line 

1 of the message, starting at position 0, and runs for 35 characters. Requests 

can also specify Required input which is used if the message was sent by a person 

rather than a BSA. 

4. Subroutines SubJ — Subroutines are called only by requests, not other sub- 

routines. If they list no group membership, only the main agent has access to 

them. Otherwise, they are distributed with their respective groups the same 

way requests are. 

3.2     A Sample Distribution 

We now consider the simplest type of distribution — that between peers — with the 

Pollster agent introduced in section 1.3.2. Suppose Patrick creates (or updates) this 

agent and then sends e-mail directed to Gerry's Pollster.2 (See figure 3-2.) Upon 

receipt of this message, Gerry's BSA checks whether it has a Pollster agent. In order 

that we have something to say here, let's assume that it doesn't.3 Then, Gerry's 

BSA places the incoming Pollster message in its delivery database, which consists 

of messages awaiting the arrival of application agent software. It then requests that 

Patrick's BSA supply the Pollster agent program. When it arrives, Gerry's BSA 

compiles the Pollster SodaBotL program and then starts the Pollster on the messages 

in the delivery database that were awaiting its arrival. 

Every BSA has two built-in agents called the RequestAgent and the Delivery Agent. 

2Software updates are distributed like new software and are indicated by providing a higher than 
current version number. 

3Another issue that arises with agent distribution is developing a common namespace. Suppose 
Gerry's BSA did have a Pollster agent, but a different one than intended by Patrick. Currently, 
the only way to handle this problem is to specify not only the agent name, but also its flavor and 
version, such as "<Pollster. Patrick; vl>". 



CHAPTER 3.   DISTRIBUTED AGENTS IN SODABOT 37 

Patrick 
A 

To: gjs@martigny 
SwS*BokPol/ster> 

I think Lisp is better than 
sliced bread. 

SodaBot< ReguestAgent  > 

Send: Pollster; main 

/5©daBoI<DeliveryAgent  >\ 

WFiles:  Pollster; main ]        j 

Pollster 

vV^ 
(1) Request agent and wait 

for its files to arrive 
(2) Perform security checks on agent 
(3) Compile and install agent 
(4) Start agent on original message 

Figure 3-2: Distribution of the Pollster agent 

When a RequestAgent receives a request to provide some section of an application 

agent, it tars, compresses, and mails the SodaBotL program corresponding to that 

section to the requester's DeliveryAgent. In turn, when a DeliveryAgent receives a 

previously requested agent, it unpacks the incoming program and uses the SodaBot 

compiler to install the agent after taking whatever security precautions (discussed 

below) that it has been configured for. 

In this example, the Pollster agent is an atomic whole and requesting it is an 

all-or-nothing affair; it is not broken down into groups. However, "peer distribution" 

doesn't require this. What is important is that when Gerry's BSA asks for the Pollster 

agent, Patrick's BSA is ready to supply it. When the groups an agent contacts are a 

subset of its own, then we call the resulting transfer of software a "peer distribution," 

i.e. your peer can supply you with the software it is requesting that you run. 

3.3    Network Topology 

What happens when an agent's environment is more complex? Unlike like with the 

simple peer distribution above, sections of agent may contact other groups in the 

agent of which they are not members; therefore, how do they supply any requests for 

these groups' software? 

Possible solutions include: 



CHAPTERS.   DISTRIBUTED AGENTS IN SODABOT 38 

• If an agent doesn't have the software, presumably, one of its "ancestors" does. 

So, it should relay the request to its "parents" and pass on their responses. 

This can require 0((n/(n -g + l))2) separate communications overall, where n 

is the number of BSA's involved and g is the number of groups in the agent. It 

can incur long communication delays, particularly if done by e-mail. 

• If an agent contacts another whose software it doesn't have, it should include 

the the name of either: (1) its "parents"; or (2) the name it was given to contact 

for software (if one was provided). Thus, requests can be sent to them directly, 

and the agent is removed from any ensuing communication regarding obtaining 

the software. 

This can require 0(ng) separate communications overall; assuming unit cost for 

processing requests, this is perhaps the minimum we can expect.4 Note that 

the communication patterns that invoke the upper bound here and in the case 

above are not necessarily bizarre or unlikely. However, these are only start-up 

costs — invoked only the first time the agent is run or when it is updated — so 

they may be quite tolerable. 

• We set up a central agent depository which keeps all current agents in a library, 

available upon request. 

This is the solution we currently prefer for SodaBot. However, it is conceiv- 

able that some applications may not be freely distributable, due to secrecy, 

export limitations, software/patent licenses, etc. Thus, we might need to pro- 

vide guarantees of limited access. We have not looked into this issue, but it 

would seem a secure protocol — perhaps via a kerberos ticketing scheme — 

might be developed to do this. 

4The caveat is that a single BSA may receive a flood of requests for agent programs from all of 
its descendants. 



CHAPTER 3.   DISTRIBUTED AGENTS IN SODABOT 39 

• Do away with group distinctions and send out agents in their entirety. Then, 

everybody has everything they need. 

Note that application agents may contact completely different agents — e.g. 

the Scheduler can contact the RoomCoordinator — not merely other parts of 

the same agent. Should we require that every BSA possess every application 

agent? Also, the distribution limitation issues discussed above apply here as 

well — effectively ruling out this option. 

3.4    What's the Risk? 

There are genuine security concerns for this (and any other) method of automatic 

software distribution. In the introduction, we noted that no one is likely to ftp 

and install random software that could send e-mail in her name. All the more so, 

shouldn't a user be concerned about random software which can simply appear on 

her workstation without her involvement? 

Currently, SodaBot can be configured with several simple options including: 

• Don't compile received agents which use the system command. 

• Ask for owner permission before compiling such agents. However, if the user 

has to read a program, what advantage does SodaBot provide? Simply that 

the programs are much shorter and easier to understand. We would argue that 

malicious behavior is therefore more easily detected. 

• Insure that application agents only access files and execute commands in par- 

ticular user-specified directories. 

A user is free to limit the system access given to her BSA, thereby limiting the 

access available to all application agents. She can also require that her BSA (and 

therefore application agents as well) obtain explicit permission before taking certain 

actions, e.g. sending e-mail. 



CHAPTER 3.   DISTRIBUTED AGENTS IN SODABOT - 40 

We hope to add more sophisticated security measures such as encrypting the 

distribution of agents to guarantee authenticity and integrity. 

3.5     The Benefit 

SodaBot's automatic distribution of application agents addresses the second and third 

of the problems outlined earlier with software agent construction: 

(2) Software agents are difficult to distribute because they may have site-specific 

dependencies; for the same reason, they can be difficult to install. 

• Agents in SodaBot distribute themselves over the Internet and/or local 

area networks. This distribution can even be across platforms and operat- 

ing systems. Simply put, acquisition of new agents does not require that 

the user do anything. 

(3) People may be uncomfortable with the amount of responsibility given to an 

unknown (and possibly buggy) agent. 

• SodaBot simultaneously helps alleviate and further exacerbates this prob- 

lem. The BSA is a trusted, much tested framework, and its behavior is 

under the ultimate authority of its owner. Regardless of this, however, 

automated software distribution would seem to get many people very ner- 

vous. Hopefully, additional efforts to protect against malicious adversaries 

will provide sufficient reassurance. 

' 



Chapter 4 

Writing SodaBot Agents 

This chapter presents SodaBotL — the SodaBot agent programming language. We 

described in chapter 3 how an application agent gets distributed in sections to the 

BSAs comprising its environment. Now, it's time to discuss what these programs 

actually mean — both to the people who write them and the BSAs that receive 

them. 

By way of example, we first outline how to create a SodaBot application agent 

that involves interactions among several people. We then present a SodaBotL pro- 

gramming reference guide and discuss the benefits provided by SodaBotL to software 

agent creators. Note, Appendix B contains a SodaBotL BNF grammar. 

4.1     Agents Describe Dialogs 

Chapter 3 described how SodaBot application agents run across a network of inter- 

connected BSAs. Generally, no single BSA runs an entire agent program; rather, each 

BSA falls into one or more groups and runs only those particular sections of an agent 

that correspond to its group membership. 

Our model for writing agents is that agent execution corresponds to a series of 

dialogs among the BSAs that comprise the agent's environment. Thus, while running 



CHAPTER 4.   WRITING SODABOT AGENTS 42 

a particular agent, a BSA's group membership determines who it's allowed to speak 

with and what it's allowed to say in a series of conversations with people and other 

BSAs. We use "conversation" here somewhat freely; we consider the BSA's owner 

making a selection in the GUI, an incoming fax, or mail from another agent to be 

among the things that the BSA can listen to. In turn the BSA can process what it 

hears and then communicate it via the GUI, fax machine, TCP/IP, etc. 

So, each request section of an agent's SodaBotL program expresses the agent's 

reaction to "hearing" a particular request while running on a BSA in its environment. 

In the framework of a conversation then, each request section of the program must 

specify: 

1. What to listen for — This is the section's permissible input. It can consist of 

a required format for incoming e-mail and/or an input specification from the 

user through the GUI. 

2. What to do with it — This specifies how to process what the agent "hears," 

including searching the input, textually manipulating it, saving it to a file, or 

feeding it to some external program. 

3. How to continue the conversation — If it is not finished, the agent needs to 

"pass the buck," by issuing one or more requests to BSAs in its environment 

and thereby create continuing threads. 

Thus, an agent writer outlines the shape of a dialog, i.e. what inputs are al- 

lowed in the dialog, how they should be transformed, and how to communicate them. 

Figure 4-1 presents a simple authorize agent for sanctioning document publication.1 

This agent was designed according to MIT AI Lab's procedure for authorizing the 

publication of memos and technical reports.  Our experience designing other ad hoc 

xThe current running SodaBot compiler uses a slightly different, less readable syntax than the one 
presented here. We are working towards making the syntax given here the standard for SodaBotL 
and had initially hoped it would be ready by the publication date of this thesis. However, the new 
compiler is not finished. We are presenting only the new syntax in the body of this document. See 
Appendix A for details relevant to the current implementation. 



CHAPTER 4.   WRITING SODABOT AGENTS 43 

$auth_dest = "publicatiori5@ai.mit.edu"; 

Agent authorize: 
Required input { 

personl: *username 
person2: *username 
pathname: ^pathname} 

Srequester = Sfrom; 
Contact Agent <authorize; certify> {users:  $personl, $person2}: 

"^requester requests that you authorize the submission in ^pathname"; 

Request certify:{group signer} 
Display {prompt "Do you want to see the file now?"; choices(yes, no, view)}: 

"You have been requested to authorize ^pathname by Srequester"; 
if choice(yes) { 

Load Spathname Scontents; 
Display {prompt "Do you want to authorize this?"; choicesfyes, no)}: 

^contents;} 
if choice(yes) {&grant_authorization} 

elsif choice(view) { 
System "ghostscript Spathname"; 
Display {prompt "Do you want to?"; choices(yes, no)}: 

"You have been requested to authorize ^pathname by Srequester"; 
if choice(yes) {^grant-authorization}} 

Request grant:{group publications} 
Display: 

"Authorization received from Sfrom for Srequester for file Spathname"; 
SrecordJfile = "/home/com/publications/$requester.$pathname"; 
Save {append} $record_file {message; 

Subroutine grant-authorization {group signer}{ 
Contact Agent <authorize; grant> {users:  Sauth.dest}: 

"I grant authorization to {requester for file Spathname.";} 

Figure 4-1: A SodaBot authorize agent for approving document publication 

task-specific software agents leads us to estimate that an agent of this complexity 

would optimistically require several weeks of implementation time and roughly 50 

pages of code. This SodaBot agent took 10 minutes to write and is approximately 

one page in length. 

The SodaBot version of the document publishing process works as follows: 

1. The document author sends mail to the authorize agent at an aliased "publications" 

e-mail address. This mail contains the name of two "authorized signers" and the 

pathname of the viewable document. 

2. The authorize agent contacts the authorized signers by sending mail to the certify 

section of their authorize agents. 

3. The authorized signers are given the opportunity to examine the document and certify 

it. 

4. Authorizations are sent back to the publications officer and recorded. 



CHAPTER 4.   WRITING SODABOT AGENTS 44 

In this example, the BSAs of the authorized signers run the signer section of the 

agent, and the BSA of the publications officer runs the publications section. Recall 

that the "group" specifications in the SodaBotL program determine which other sec- 

tions of the program get distributed when a BSA requests some specific portion. For 

example, when the BSA of an authorized signer first requests the certify section of 

the authorize agent, it is also sent all other members of the signer group, in this case, 

the grant-authorization subroutine. 

It is essential that messages mailed by agents be readable by people who do not use 

SodaBot.2 Therefore, agents must send human-readable text. Note that the certify 

section refers directly to variables, such as $requester, which have been substituted 

into the text message it receives without any explicit parsing of the message body 

or requirements for structured format. This is achieved by including an unobtrusive 

extra header in the message which contains minimal sufficient information for deter- 

mining the demarcations of the text substituted for the variables referenced by the 

receiving agent. (Page 35 illustrates such a header.) The BSA automatically extracts 

this text and stores it in the appropriate local variable(s).3 

4.2     SodaBotL Reference Manual 

This section is an abbreviated guide to programming in SodaBotL. Readers who know 

C or Perl may find it useful to keep in mind that SodaBot's syntax is loosely related 

to each of theirs. 

We discuss in this section the following topics: 

(4.2.1)     Where the BSA looks for things 

20f course we exclude here messages intended for SodaBot's internal use, such as a request for 
agent distribution. 

3SodaBot currently does not interact well with people who do not have SodaBot BSA's. We are 
currently adding automated construction of a structured text form-generator based on the required 
input specification. This will be coupled with automated error handling for user text-based input 
which differs from an agent's specified input format that will result in appropriate explanatory error 
messages. 



CHAPTER 4.   WRITING SODABOT AGENTS 45 

(4.2.2) Variables in the BSA 

(4.2.3) Conditionals 

(4.2.4) How to write a mail filter 

(4.2.5) How to write an application agent 

(4.2.6) SodaBotL primitives 

4.2.1     SodaBot File Hierarchy 

When a user first runs SodaBot, it creates a directory hierarchy in ""/.sodabot/." 

The top-level subdirectories in this hierarchy are: 

1. Agents — Contains compiled SodaBot application agents. 

2. AgentsSrc — Contains the SodaBotL sources to all agents received by the BSA 

and to agents written by its owner. Each application agents is kept in a separate 

subdirectory. 

3. DBase — Stores the sleeping, system, and delivery databases. 

4. Lib — Internal SodaBot library files 

5. Log — Stores the BSA's extensive, human readable logs of its activity. 

6. NonAgents — Contains compiled SodaBot mail filters. 

7. NonAgentsSrc — Contains the SodaBotL sources to the mail filters. 

8. SodaBot — Internal SodaBot directory, stores information about owner. 

Users can create new agents and mail filters through the SodaBot agent editor, or 

they can write and compile SodaBotL files directly. The agent editor is invoked via 

the "Programmer" menu in the main GUI window. (See figure 1-2.) The SodaBotL 

compiler looks for its input in the appropriate "Src" directories and places compiled 

output in the appropriate object file directories. A sample interaction might be: 

mhcoen@double-chex>compile test.sbt 

SodaBot Compiler VIA running. 



CHAPTER 4.   WRITING SODABOT AGENTS 46 

Reading /home/c2/mhcoen/.sodabot/NonAgentsSrc/test.sbt 

Checking syntax of syntax of compiled program... 

Writing program to /home/c2/mhcoen/.sodabot/NonAgents/te$t.pla 

4.2.2    Variables 

All variables in SodaBotL are prefaced with a $.   Variables are typed according to 

their current context, so no explicit type declaration is necessary; for example, "10" 

can be either a number or a string, depending on how it is used. Variable assignment 

and reference work as you would expect. Here are some sample expressions: 

$name = $username; 

$address = "545 Technology Square 

Cambridge, Ma 02139\n"; 

Mail to $host: 

"My snail-mail address is:\n$name\n$addressn; 

Strings can be multiline and can contain \" to quote things, e.g. 

$quotedstring = '\"Inside Quotes!\""; 

The BSA automatically defines a number of variables. These include variables 

corresponding to all headers present in the current e-mail message as defined 

by [Horton, 1983]. (For example, $from and $subject. See the BNF "Field" pro- 

duction on page 73 for a list of all valid headers.) Also, the following are always kept 

current: 

Variable name Description of value 

$home user's home directory 

$user[-]name user's full name 

$userJogin, $me user's login name 

$message the complete text of the current message 

$body the body of the message 

$name sender's full name if specified 

$address sender's e-mail address 

$reply-to if not specified, value of $from is used 



CHAPTER 4.   WRITING SODABOT AGENTS 

4.2.3    Conditionals 

47 

Conditionals in SodaBotL perform regular expression matching and numerical com- 

parisons: 

Expression True if 

($a eq $b) $a and $b are equivalent 

($a eq "moo") $a equals the string "moo" 

($a neq $b) $a and $b are not equivalent 

($a =~ /$b/) $a contains $b 

($a =~ /moo/) $a contains "moo" 

($a =~ Ad+/) $a contains a number, etc. 

($a ! ~ /$b/) $a doesn't contain $b, etc. 

($a == $b) $a and $b are numerically equal 

($a <= $b) $a < $b, etc. 

Regular expression are contained in "/.../" do not require internal quotations. Good 

references for building regular expressions are [Wall and Schwartz, 1990, p24-29] and 

[Dougherty, 1990]. 

You can use && for AND and || for OR and ! for NOT. Conditionals can be nested 

in the standard way, e.g 

if (((Sfromeq "las") || ($from eq "gjs")) &k ($subject =~ /6\.001/)) 

4.2.4    Writing a Mail Filter 

The BSA can execute a series of SodaBotL expressions upon the arrival of specific 

incoming e-mail. The user specifies which e-mail triggers the BSA by providing a 

number of regular expressions that must match the e-mail's headers and/or body. 

For each of these triggers, the user also specifies the BSA's appropriate reaction. 

A mail filter is a list of these (trigger, response) pairs. User's can create multiple 

mail filters which are examined by the BSA when there is incoming e-mail. The BSA 



CHAPTER 4.   WRITING SODABOT AGENTS 48 

can also batch new messages, waiting until a certain minimum number (specifiable by 

the user) arrive before running the mail filters. Currently, SodaBot does not give the 

user particularly good control over incoming message volume, i.e., how many windows 

the BSA is allowed to pop-up on the user's screen. While the announcement of new 

messages can be delayed, there is no mechanism for prioritizing a group of incoming 

requests and perhaps eliminating those of lesser importance or allowing the user to 

select among them. We hope to add these capabilities shortly. 

SodaBotL mail filter primitives: 

Maii filter: (No arguments) 

Declares that the following expressions constitute a mail filter. All subsequent 

SodaBotL expressions up to the next Agent or Mail filter statement comprise the 

body of the mail filter. 

Received Mail [{headerl: /reg-expl/; header2: /reg-exp2; ...} expressions] 

If mail arrives where each header matches the corresponding regular expression, 

execute the given SodaBotL expressions. A received mail statement with an empty 

header-regular expression list gets triggered on every message. 

Sample expressions: 

Mail filter: 

Received mail {from: /fax notifier/; to: /$me/; subject: /arrival/}: 

Display "An incoming fax has arrived."; 

Received mail {from: /$me/;}: 

Save {append} "~/Mail/outgoing" $message; 

4.2.5    Writing an Agent 

SodaBot application agents are divided into four sections: (See figure 3-1.) 

1. Global declarations 



CHAPTER 4.   WRITING SODABOT AGENTS 49 

2. The main agent 

3. Agent requests 

4. Agent subroutines 

This section presents the syntactic specification of each of these sections. A model 

for approaching application agent design was discussed in section 4.1. 

Global declarations 

Global declarations are variable assignments which can be referenced by all agents 

requests and subroutines. They are included in all distributions of the agent. 

Agent Name: 

[Required input {String-!: Hype.1 

String.2: *type_2 ...}] 

[SodaBotL expressions] 

The Agent declaration begins the definition of the named agent. All subsequent 

SodaBotL expressions up to the next Agent or Mail filter statement comprise the 

body of the entire agent. 

The Required input specifies the format of the input which must be supplied to 

the agent. The SodaBotL expressions are run by the agent when it is invoked. 

Required input {String-1: Hype A 

String-2: *typeJ2 ...}] 



CHAPTER 4.   WRITING SODABOT AGENTS 50 

The Required input specification is a template for describing the format of the 

structured e-mail message which invokes the agent. Each line in the specification 

must match a corresponding line in the message such that the ordering is preserved. 

The type expression HypeJ can be any of the types shown on page 73 or an arbitrary 

regular expression. 

For example, we again note the correspondence between the e-mail from page 35 

and the authorize agent in section 4.1: 

To: authorize@ai.mit.edu 

Person 1: las 
Personl: brooks 
pathname: ~mhcoen/tr.ps 

as input to      Agent authorize: 
Required input { 

personl: *username 
person2: *username 
pathname: *pathname} 

Request Name: {group[s] groupl, ...} 

[Requiredinput {StringA: HypeA 

String^: *type-2 ...}} 

[SodaBotL expressions] 

A Request declaration begins the definition of the named request. All subsequent 

expressions up to the next Request or Subroutine or until the end of the agent's 

program comprise the body of the request.   Requests can specify Required input to 

allow people to invoke them directly.  However, assuming it was invoked by a BSA, 

a request's body can directly reference variables substituted into the e-mail when it 

was sent. For example, note the correspondence between: 

Agent A:                                           contacting (in Agent A) 
Sperson = Susername; Request hello: {group main} 
Contact Agent <A; hello> {user: mhcoen} Display "You received 

"Hi, I am $person."; greetings from Sperson."; 



CHAPTER 4.   WRITING SODABOT AGENTS 51 

Subroutine Name {group[s\   groupl, ...}{ 

[SodaBotL expressions]} 

A Subroutine declaration defines the named subroutine. The body of the sub- 

routine is contained within the indicated brackets. Subroutines have no explicit 

arguments; however, they can directly access the variables defined in the requests 

which invoke them. Note that subroutines are invoked only by requests, not other by 

subroutines. They are called by prefacing their name with an "<&." 

4.2.6    SodaBotL Primitives 

Contact Agent <Agentname; Requestname> {user[s\: userl, user2, ... } [string]; 

Agents issue requests to one another via Contact Agent. The users field specifies 

whose BSAs receive the given request. The optional string specifies input for the 

particular request being issued. Any variables referenced in this string can be directly 

referenced in the receiving agent. If a receiving BSA doesn't have either the specified 

agent or the particular request section of that agent, it issues use Contact Agent to 

get the software from the RequestAgent of whoever initiated this interaction. 

Currently, agents contacts are only relayed via e-mail. We are beginning work on 

a TCP/IP connection for the BSA as an alternate and hopefully faster inter-agent 

communication medium. 

Sample expression: 

Contact Agent <007; setname> {user: Ssecret} uJames Bond"; 

Load filename variable; 

Loads the contents of filename into the named variable. 

Sample expressions: 

Load $filename $contents; 

Load u/home/c2/mhcoen/.schedule" $schedule; 



CHAPTER 4.   WRITING SODABOT AGENTS 52 

Mail [to] address: string 

Mail simply sends the specified string the given address. 

Sample expressions: 

Load "-/letter" $letter; 

Mail to mhcoenai.mit.edu: Sletter; 

Mail to $user: "Your toast has popped up.\n"; 

Reply with string 

Replies to current mail message with given string. 

Sample expression: 

Reply with "My final offer is $USDollars.\n"; 

Save [{append}] filename string; 

Saves (or appends) the specified string into the named file. 

Sample expressions: 

Save "/usr/tmp/'current" "$from, Ssubject"; 

Save {append} "/usr/games/XChess/$book-openings" "It was a dark 

and stormy night.\n"; 

 GUI Primitives  

Display [{choices(cstringJ, cstring.2); ...; no delay; timeout in interval; for interval}] 

string; 

Display creates a window containing the specified string on the user's current 

display.    Choices allows the user to select possible responses from stacked rows of 



t 

i 

CHAPTER 4.   WRITING SODABOT AGENTS 53 

"radio buttons." The BSA puts the agent to sleep until she has made her selections 

unless no delay is specified. The SodaBotL choice array is indexed over all specified 

options, e.g. cstring.l - cstringJ; after the user makes her selections, an element in the 

array is true if the user selected the corresponding button in the displayed window. 

The timeout (and equivalently for) specification force the window created by this 

command to disappear after the given interval and wake the agent up. Multiple new 

windows appear in a staggered, overlapping layout to reduce screen clutter. 

Display (and other GUI-specific primitives) have emacs-style "hooks" which can 

be invoked before the command is executed. These hooks are simply appropriatety 

named subroutines, e.g. DisplayJiook, which are intended to allow the GUI access 

to be redirected to another communication medium. 

Sample expression: 

Display {choices(yes, no); for one hour} "Mail from Lynn! 

Do you want to read it now?"; 

Get Response [{prompt — string; no delay; timeout in interval; for interval}] string; 

Get Response displays creates a window containing the specified string on the 

user's current display. This window also contains a mini-editor that allows the user 

to enter an arbitrary textual response to the specified prompt. This response is 

available to the SodaBotL program in the $response variable. 

Sample expression: 

Get response {prompt = "What is your answer?"} 

"$quiz-question "; 

Query [{type = reg-exp; prompt = string; no delay; timeout in interval; for interval}] 

string; 



CHAPTER 4.   WRITING SODABOT AGENTS 54 

Query displays creates a window containing the specified string on the user's 

current display. It allows the user to enter a one-line response which much match the 

given reg-exp in response to the given prompt. 

Sample expression: 

Query {prompt = "When you are you free?"; type = time} 

$schedule; 

4.3    The Benefit 

SodaBotL contributes more complete solutions to two of the three problems outlined 

above with software agent construction. 

1. Software agents can be technically challenging to write in traditional program- 

ming languages and operating systems: 

• SodaBotL offers high-level primitives and control-structures designed 

around human-level descriptions of agent activity. It allows users to easily 

create automatically-distributed software agents while ignoring low-level 

implementational details. 

• Because SodaBotL agent programs can be much shorter and higher-level 

than their counterparts in more traditional systems, they are easier to 

debug and maintain. 

2. People may be uncomfortable with the amount of responsibility given to an 

unknown (and possibly buggy) agent. 

• Users can inspect SodaBotL programs for security threats more easily than 

would be possible with agent programs written in other programming lan- 

guages, because: (1) the level of discourse is so much higher; and (2) the 

programs are smaller. 



Chapter 5 

Software Agents 

The thesis has so far presented a specific view of what software agents are and how 

they should be used. However, software agents come in many flavors, and they differ 

widely in terms of specialization, usefulness, and theoretical motivation. This chapter 

discusses related work in the field and then outlines the common ties that link even 

vastly dissimilar agent implementations. We simultaneously discuss how SodaBot 

relates to and differs from other work in the field. 

Section 5.3 presents our motivation for designing the SodaBot system based on 

experience described in [Kautz et al., 1994] 

5.1    What's an Agent? 

There is simply no set of necessary or sufficient criteria for determining whether some 

program is indeed a software agent. The "definition" varies widely, as do approaches 

to building agents. However, we can look for some general agent characteristics by 

examining some typical (and not necessarily mutually exclusive) approaches. 

We note here that no other software agent system (of any flavor) that we know 

of has an automated distribution mechanism like SodaBot's. In fact, personal com- 

munication with several of the researchers below indicates that this currently poses 

55 



CHAPTERS.   SOFTWARE AGENTS 56 

some difficultly, because few people outside of their research groups can make use of 

their agents. 

5.1.1     Software agents are on-line pseudo-people 

Software agents are ontologically grounded in their role in the agent community. 

Agents have beliefs, commitments, obligations, intentions, and perhaps even confu- 

sion, stubbornness, etc. Exactly what these agents do with all their commitments, 

obligations, intentions, etc, has not necessarily been made particularly clear, but 

what's supposed to be important is that we have a motivated vocabulary for de- 

scribing coordinated agent interaction, e.g. Agentl sent AgentS e-mail because it felt 

"obligated," or perhaps Agentl crashed the network because it was "confused." 

[Shoham, 1993] has defined an formal language for describing agents' "mental 

states" in terms of epistemic logic. He also presents a corresponding agent program- 

ming language called AGENT-0 ([Torrance and Viola, 1991]) which is semantically 

grounded in this mental state language. AGENT-0 very much resembles Prolog, but 

it has primitives which are well-suited for communication of obligations, beliefs, and 

capabilities between agents. 

Whereas SodaBot is intended for assisting with practical, on-line tasks, AGENT-0 

is suited for researching the interaction of coordinated cognitively-based agents, i.e. 

agents that think, but don't do much else. It would seem that neither system would be 

particularly adept at handling the job of the other. His approach does not necessarily 

conflict with our own. In fact, it would be very interesting to try combining aspects 

of both systems by providing BSAs with some type of formal intentional state. 

We note that there is much other theoretical research into agent cognition, such 

as [Doyle et a/., 1991]. Again, it would be very interesting to ground this work by 

implementing it in a realized system. 



CHAPTERS.   SOFTWARE AGENTS 57 

5.1.2     Software agents are a testbed for other realms in Core 

AI. 

Software agents are the new universal research tool for AI. Because expert systems 

and robots are leaving the limelight, software agents (and the people who research 

them) should enjoy their moment in the sun. 

[Etzioni, 1993] argues that software agents are an ideal "foundation for core 

AI research." While we agree with this conclusion, we do not accept the argu- 

ments he uses to reach it (see [Coen, 1994]). Regardless, Etzioni et als work on 

Unix "softbots" ([Etzioni et al, 1992a, Etzioni et al, 1993, Etzioni and Segal, 1992, 

Etzioni et al, 1994]) provides a very interesting foundation for exploring many cen- 

tral issues in traditional core AI, particularly in planning. There are many differ- 

ences between this work and our own. Softbots are intended for much more system- 

administration oriented applications than are SodaBots; therefore, the softbot level 

of discourse is in terms of (low-level) Unix primitives. Softbot agents do not seem 

to interact with anything other than their owners, and thus, their capabilities do not 

extend to inter-agent communication.1 Finally, the softbot system does not seem to 

have any provisions for assisting with distribution of softbot agents or their UWL 

plans. 

The Darpa Knowledge Sharing Effort ([Neches et al, 1991]) has encouraged 

much agent-based research into knowledge representation and communication lan- 

guages. This effort has led to the design of an agent communication language 

(ACL) intended as a universal medium for agent discourse. Genesereth et al 

([Genesereth and Singh, 1994, Genesereth and Ketchpel, 1994]) present a "federa- 

tion" agent architecture that employs this ACL, and [Genesereth 1994] discusses these 

agents obtaining arbitrary software programs from other agents by advertising their 

required specifications written in ACL. 

1We   don't   consider   even   sophisticated   interaction   with   disk   drives   and   printers   to   be 
communication. 



CHAPTER 5.   SOFTWARE AGENTS 58 

It is worth noting that work on ACL has yet not been completed, so agent sys- 

tems which communicate in ACL do not yet exist. We also remain highly skeptical 

of this ACL's ontological sufficiency and soundness. Furthermore, agents would have 

to "know" a program existed before they could advertise for it; this type of distri- 

bution does not address how novel programs are spread among networked agents. 

Finally, this work makes no mention of the practical consequences its type of distri- 

bution would entail, nor does it discuss the required effort to realize the described 

hypothetical agents. 

The work of [Vere and Bickmore, 1990] is quite unusual. Their "basic agent" has 

a remarkably wide core AI foundation, drawing on a broader range of research areas 

than any other system with which we are familiar. However, their domain is so narrow 

and their application so involved that it bears little resemblance to any current work 

in software agents. 

5.1.3     Software agents are intelligent on-line assistants 

Software agents are artificial secretaries which are the electronic counterpart of their 

real-world namesakes. This is not to say that anyone looks forward to the prompt 

delivery of simulated coffee each morning! Rather, these personal assistants are de- 

signed for tasks such as: filtering e-mail, scanning NetNews, providing appointment 

reminders, etc.2 Given the complexity of on-line environments and huge volume of 

information flowing across the Internet, this type of agent looks quite attractive. 

Interface agents ([Maes, 1994, Sheth, 1994]) are a special class of on-line assis- 

tants which are designed to simply user-interaction with particular pre-existing ap- 

plications. These agents are designed to learn and predict users' behaviors and pref- 

erences. SodaBots have little in common with interface agents, because interface 

agents are each highly elaborate, custom-crafted programs designed for very specific 

2One rather extreme and slightly dismaying example of an on-line assistant might be the H.A.L. 
9000 in 2001: A Space Odyssey. 



CHAPTER 5.   SOFTWARE AGENTS 59 

applications. Also, SodaBot does not have built-in capabilities for learning user be- 

havior and preferences. Providing these would be an interesting direction for future 

development of the SodaBot system. 

For example, Sheth provides an interactive information retrieval system for UseNet 

NetNews articles. It is designed to autonomously select those articles whose content 

would interest the user according to some complex metric involving the user's pre- 

vious selections. Sheth's work is similar in spirit to much of the activity regarding 

knowbots™ ([Kahn and Cerf, 1988, Waldrop, 1990]), which has generally fallen out- 

side of the realm of mainstream AI research, although there are some exceptions, e.g. 

[Knoblock and Arens, 1994]. Knowbots (knowledge robots) are intended roughly as 

librarians for enormous digital data-libraries. They are not general purpose but are 

highly elaborate, specific creations. Thus, these too have little if anything in common 

with SodaBots. 

5.1.4    Software agents are negotiators 

Groups of software agents can make decisions or form coalitions. If a group of people 

with complex time-constraints need to arrange a meeting, software agents can do it for 

them without requiring that a person bother with the intricate constraint balancing 

inherent in meeting-scheduling (and perhaps without anyone's feelings getting hurt). 

In fact, meeting scheduling is the most popular software agent negotiation 

application. [Kozierok, 1993, Maes and Kozierok, 1993] schedules group meetings, 

[Kautz et al, 1994] schedules meetings between individuals, and [Dent et a/., 1992] 

does both (and more). The backbone of all of these systems could be implemented in 

SodaBot. However, the actual scheduling processes would require external applica- 

tions. For example, Kautz et aZ.'s VisitorBot requires use of CPlex — a sophisticated 

integer programming package — which could be accessed through the SodaBot system 

command.3 

3CPlex actually requires a very expensive machine-specific license.  However, we note (without 



CHAPTER 5.   SOFTWARE AGENTS -     60 

There has also been much theoretical work on abstract agent negotiation protocols, 

as in [Zlotkin and Roesnschein, 1994, Rosenschein, 1993]. As we pointed out earlier 

with reference to the work of Doyle, it would be very interesting to ground this 

theoretical work in negotiation by implementing it in a realized system. 

5.1.5     Other Points of View 

[Stein, 1994] has suggested that "agency" (i.e., the property of being an agent) is 

determined by an observer's intentional stance; what a person views as an agent is 

an agent. While this may well be a tenable philosophical position, it is not clear 

what benefit it provides. Rather, in term of directing research efforts, particularly 

with the growing popularity of "agents," it might be preferable to narrow the scope 

of the term. Even in research communities this designation is perhaps being abused. 

Work such as [Lansky, 1994] was once called an expert system. It was quite surprising 

to hear such a classic example of that paradigm being presented at the A A AI 1994 

Spring Symposium on Software Agents. 

The final system we discuss is Telescript ([Wayner, 1994]). Although few details 

of this proprietary system have been disclosed, enough information has been released 

to permit a tentative comparison. Telescript is a very sophisticated computational 

environment in which machine-independent programs move freely around a network. 

Telescript programs are interpreted, and interpreters exist for all standard platforms. 

Essentially, in terms of portability, it is the algorithmic equivalent of "postscript." 

High Telescript, the system's programming language, is reportedly very similar 

to Smalltalk and Modula-3. Thus, it does not provide the right level of abstraction 

for writing agent applications. Furthermore, Telescript programs have fixed mean- 

ings, i.e. primitives are not interpreted with respect to their context. However, it 

would seem that Telescript might be an ideal system for reimplementing SodaBot. 

advocating) that by setting up a BSA on the machine on which CPIex has been installed, it is trivial 
to allow anyone, anywhere, to access CPIex via a simple SodaBot application agent. 



CHAPTER 5.   SOFTWARE AGENTS 61 

Regardless, we look forward to seeing what comes out of this very promising endeavor. 

Telescript seems like a step in the right direction. 

5.2    Agency Defined 

Clearly, there is an enormous variety in what people deem a software agent, and it 

is somewhat difficult to tell whether this is good or bad for the field. Nonetheless, 

having many enthusiastic researchers working on their various "agents" is probably 

to everyone's benefit, so we refrain from complaining too loudly. 

However, we favor the following as a set of minimum criteria for establishing a 

program's "agency:" 

1. Software agents engage in dialogs; we don't issue commands to agents, rather 

we have conversations with them. The communication patterns among agents 

can be quite complicated. 

2. Software agents are autonomous and intelligent; they respond to complex stimuli 

with sophisticated (and appropriate) behaviors. 

3. Software agents must be robust. Because they are autonomous and presum- 

ably doing something important, agents must be able to respond to unexpected 

changes in their computation world. 

4. Software agents are generally not time invariant — they have memory and 

change what they do over time. Agents can employ formal machine learning 

techniques, or they can more casually collect data while they operate. Per- 

sonal assistants can learn patterns in their owners' behavior, and more gener- 

ally, agents can spontaneously react to particular events in their computational 

world. 

5. Software agents are typically distributed across a network, so their behavior can 



CHAPTER 5.   SOFTWARE AGENTS 62 

have both local and global effects. Abstraction barriers can become confused if 

an agent is responsible for too many non-local events. 

5.3     SodaBot's Motivation 

The SodaBot system was heavily influenced by my participation in developing the 

VisitorBot ([Kautz et al, 1994]) in the AT&T Bell Laboratories' AI Principles Re- 

search Group.4 

5.3.1    The VisitorBot 

The VisitorBot is a software agent that schedules meetings with a visiting researcher 

(who is presumably also giving a talk). The VisitorBot distributes the talk's abstract 

and accepts requests for meetings with the speaker. It then distributes schedule- 

outlines which are filled out by those interested in reserving a time slot. Finally, after 

receiving submitted time constraints from users, the agent generates (and distributes) 

a schedule of meetings with the visitor. 

The history behind the development of this agent is revealing. The version de- 

scribed in [Kautz et al, 1994] was begun at AT&T Bell Labs while I was a summer 

student there. However, due to numerous technical difficulties, this agent was not 

yet completed by the time I returned to MIT at the end of the summer.5 Therefore, 

I ported the agent to the MIT AI Lab in order to finish working on it. Interfacing 

the agent to the AI Lab's mailer involved nontrivial effort, and after completing it 

here, installing and debugging the agent at Bell Labs remotely from MIT required a 

ridiculous amount of time. (This was primarily due to Bell Lab's network "firewall.") 

While writing the VisitorBot (among other agents)6, it became clear that get- 

4I worked at Bell Labs from the the middle of May through the first week of September during 
1993. 

5Steven Ketchpel actually implemented an earlier, complete version of the VisitorBot on top of 
a simple mail-reading agent developed by Henry Kautz. 

6I wrote several other software agents at Bell Labs over the summer. Most notable is the MgXBot 



CHAPTER 5.   SOFTWARE AGENTS 63 

ting an agent to run at a particular location required a large amount of site-specific 

information. Additionally, an agent which centrally controlled all aspects of user- 

interaction was prone to failure in a networked environment. (For example, it is 

not possible to open X-Windows across a firewall.) Essentially, there were no clean 

abstraction barriers for writing agent software. 

The development of personal agents in [Kautz et a/., 1994] was a first step towards 

establishing some minimum level of distinction between local and non-local agent 

activity. For example, the VisitorBot could tell a user's personal agent to open a 

window on the user's display rather than doing so itself. However, both the VisitorBot 

and its involved personal agents are very much ad hoc, non-generalizable creations. 

The personal agent in [Kautz et a/., 1994] is hard-coded and custom tailored to the 

VisitorBot, i.e. a hypothetical PaperReviewBot would require that users obtain a 

different personal agent to interact with it. According to this approach, every time a 

new agent is written, each user must install the appropriate personal agent to permit 

interaction with it. 

SodaBot was my reaction to the effort required for writing and installing the 

VisitorBot. Although we found that it was generally very easy to state succinctly 

the desired agent behavior in English, it was quite another thing to formulate this in 

Perl and C. This distinction differentiates between SodaBot and efforts in the field of 

automated programming. Loosely speaking,, the shortest specification of a program 

is generally the program itself; however, given the highly specialized domain in which 

software agents function (at least in SodaBot), it is usually quite easy to give a short 

high-level specification of an agent's desired behavior. SodaBot takes advantage of 

this by allowing an agent creator to provide merely this high-level specification. The 

system essentially handles all the effort involved in actually realizing the specified 

agent. 

which allowed me to edit my SM thesis proposal at Bell Labs and process it remotely at MIT. It 
notified me of any errors encountered during text processing at MIT, displayed the final results on 
my Bell Labs' workstation, etc. 



CHAPTER 5.   SOFTWARE AGENTS -     64 

We did not address in [Kautz et al, 1994] how a new agent is released to the 

world. The VisitorBot was a collection of random C and Perl files which had to 

be installed and configured by a skilled human being. The difficulties inherent in 

encouraging use of new agents are thus enormous. Not only would a new user need to 

be convinced that the files are safe to install and to use, but she would additionally 

have to be willing to trust the system could, for example, handle her e-mail properly. 

Finally, installing and running the VisitorBot also sometimes required root access, 

which generally would prevent the average user from installing it herself. 

How to distribute new agents was the subject of much discussion over the summer. 

The approach in SodaBot was motivated by a discussion of distributed agent planning 

at a Bell Lab's Bot meeting, where Ron Brachman suggested that planning agents 

could e-mail STRIPS operators to each other. I was quite taken with this idea and it 

eventually found its way into SodaBot (where agents instead send SodaBot programs). 



Chapter 6 

Conclusions 

This chapter evaluates the SodaBot system; we discuss it strengths, weaknesses, and 

future work. 

6.1     SodaBot's Report Card 

We could evaluate the SodaBot system by the following criteria: 

1. It solves the problems listed in section 1.2. 

2. Naive users enjoyed interacting with it. 

3. We learned something building it. 

However, only the first and third are currently capable of being assessed, because 

we did not have genuinely naive users test SodaBot. Nonetheless, we examine each 

of the three criteria in turn and discuss how it is addressed by various components of 

the SodaBot system. 

It solves the problems listed in section 1.2: 

1. Software agents can be technically challenging to write in traditional program- 

ming languages and operating systems: 

65 



CHAPTER 6.   CONCLUSIONS 66 

• The BSA provides the right foundation for software agent creation. It 

removes system specific aspects of agent creation from the domain of the 

agent programmer. 

• SodaBotL offers a level of discourse appropriate for the types of on-line 

activities in which agents engage. The high level primitives in SodaBotL 

allow agents to be written more quickly and in less space. 

For example, we can approximately implement the "VisitorBot" system 

described in [Kautz et a/., 1994] in several pages of SodaBotL code.1 The 

VisitorBot implementation described there is well over 50 pages of Perl 

and C code. 

2. Software agents are difficult to distribute because they may have site-specific 

dependencies; for the same reason, they can be difficult to install. 

• The BSA disconnects application agents from the specific computational 

environment in which they run. Agent programs no longer need to be 

"hard-coded" with site-specific information. The problem of configuring 

many software agents is reduced to the problem of configuring a single 

agent, i.e., the BSA. 

• Agents in SodaBot distribute themselves over the Internet and/or local 

area networks. Although there is currently only a Unix platform for Soda- 

Bot, this distribution can theoretically be across operating systems. Sim- 

ply put, the acquisition of new agents in SodaBot does not require that 

the user do anything. 

3. People may be uncomfortable with the amount of responsibility given to an 

unknown (and possibly buggy) agent. 

xIn terms of features, the two scheduling agents are not strictly comparable yet.  Kautz et al.'s 
looks better. Ours is more robust. 



CHAPTER 6.   CONCLUSIONS 67 

• The BSA allows the user to gradually establish confidence in its behavior 

and to selectively disable and enable access to specific system resources. It 

provides a stable agent-framework over which the user can exert ultimate 

control. 

The system as a whole has seen four months of use, testing, and debug- 

ging, and its longest continuous operation without restarting has lasted 

approximately one week. It has been reliable handling e-mail, i.e., it has 

not lost messages, and it has had low system overhead. 

• Users can inspect SodaBotL programs for security threats more easily than 

would be possible with agent programs written in other programming lan- 

guages, because: (1) the level of discourse is so much higher; and (2) the 

programs are smaller. 

We feel SodaBot successfully presents solutions to the specified problems. How- 

ever, most of our time has been spent developing the system, not using it. We have 

built many "toy agents" but very few large-scale ones. Therefore, we can't (yet) claim 

a flood of agent development has resulted from the SodaBot system. Hopefully, when 

the system is "bullet-proofed" and released for general use, more agent applications 

will be forthcoming. 

Finally, we acknowledge that evaluating the SodaBot system is not a necessarily 

objective process. We have received the critique "[the authorize agent in section 4.1] 

would be very easy to implement in very few lines of [non-SodaBotL] code." Even 

though this agent is a quite simplified version of what an "end product" would require, 

we disagree and suggest that those who are skeptical of our position actually go ahead 

and implement the agent in "very few lines."2 

2Some things to consider include handling:  (1) network downage; (2) e-mail lossage; (3) user 
I/O; (4) distributing the agent so that people can use it; etc. 



CHAPTER 6.   CONCLUSIONS 68 

Naive users enjoyed interacting with it. 

SodaBot is not intended to be a "Unix wizards only" tool. A major consideration 

while designing it was to make it as user-friendly as possible. For example, the 

compiler gives quite instructive error messages; it points out explicitly the offending 

statement and suggests what might be the problem and how to fix it. However, we 

can't say any genuinely naive users have used it, so the assessment of this criterion 

will have to wait. 

There are some definite aspects of the system that need improvement, particularly 

with respect to mail filters. For example, users will almost certainly insist on some 

way of prioritizing mail filter firing so they don't get flooded by window's popping up 

on their screen after a long absence. This does not constitute a major addition, and 

implementing user demands can only increase the value of the system. 

We learned something while building it. 

Certainly, a fair amount (perhaps too much) of Unix, X-windows, C language, etc. 

knowledge was acquired building SodaBot. It provided ample opportunity to learn 

about the many obscure aspects of building large "real-world" systems. 

However, perhaps the best indication that we learned something is that we are 

immediately setting out to rewrite it. We want to make SodaBot more user-extensible: 

she should be able to declare new SodaBotL primitives, enhance the GUI, and easily 

hook the BSA up to arbitrary system components, e.g. a speech synthesizer. 

We do not plan on distributing the current SodaBot implementation outside of 

the MIT AI Lab. We will continue rewriting it, playing with it, and introducing 

it to the local community. We feel it was a very good first step towards making a 

general purpose software agent construction system. We very much look forward to 

completing the next release and seeing what people end up doing with it. 



CHAPTER 6.   CONCLUSIONS 69 

6.2     Closing Summary 

This thesis has presented SodaBot, a software agent user-environment and construc- 

tion system. The basic software agent was introduced as a foundation for construct- 

ing SodaBot application agents. We then presented SodaBotL — the software agent 

programming language — whose primitives are designed around human-level descrip- 

tions of agent activity. Via this programming language, users can easily implement 

a wide-range of typical software agent applications. Along the way we also discussed 

how people go about writing application agents and how SodaBot automatically dis- 

tributes them. 



Appendix A 

Details of the Current 

Implementation 

The primary difference between the current SodaBotL syntax and the one presented in 

the paper is in the structural division of agent programs. In both versions, application 

agents are stored in unique directories in ""/.sodabot/AgentsSrc/" However, the 

current version requires that each group of an agent be stored in a seperate sub- 

directory; thus, no single file contains an entire agent having 2 or more (non-trivial) 

groups. Each group is acutally treated as a unique application agent. 

Also, in the current implementation: 

1. All numbers must be inside quotes. 

2. The types listed in the agent input specification on page 73 do not exist. 

3. Order is not preserved for required inputs. 

4. The "SodaBot-Parser:" header does not work for multiline strings. 

5. The Smessage variable is not preserved if the agent is placed in one of the three 

databases. 

6. Subroutines are identical to requests. An agent simply directs a request to its 

host BSA to call a subroutine, so variables must be passed explicitly. 

7. The semi-colon and bracketing syntax are slightly different. 

70 



Appendix B 

SodaBotL BNF Specification 

Functional Declarations: 
< Program > 

<Mail filter> 

<Mail description> 

<Agent> 

< Agent request > 

<Subroutine> 

<Declaration> 

<Mail filter> [<Program>]      |    <Agent> [<Program>] 

Mail filter: [<Declaration>*] <Mail description>* 

Received Mail [{<Mail specification;^]; 

<Statements>* 

Agent <Agent name>: 

[<Input>] 

<Statements>* 

<Agent requests>* 

<Subroutine>* 

Request <Request string>: [{ group <string> }] <Statements>* 

Subroutine <Sub name>([<Arg list>]): [{group <string>}] 

{<Statements>*} 

Library <Library name>     |    <Declaration> 

71 



APPENDIX B.  SODABOTL BNF SPECIFICATION 72 

Statements: 
<Statement> 

< Assignment > 

<System> 

<Save> 

<Load> 

< Reply > 

<Mail> 

<Contact agent> 

<Sub call> 

<If> 

<Assignment>   j <Systera>   | <Save>   j <Load>   | <Reply>   | 

<Mail>   | <Contact agent>   | <Sub call>   | <If>   | <GUI call> 

<Variable> = < String value>; 

System <String value>; 

Save [{Append}] <jFilename> <String value>; 

Load <Filename> <Variable>; 

Reply with <String value>; 

Mail to <Address>; <String value>; 

Contact agent <<Agent name>;<Request string>> 

{users:   <Address list>} [<String value>]; 

$<Sub name>([<Arg List>]); 

// (<Condition>) { <Statement> } 

[elsif (<Condition>) {<Statement>}]* 

[eise {<Statement>}] 

GUI Statements: 

<GUI call> 

<Display> 

<Get response> 

<Query> 

= <Display>   | <Get response>   | <Query> 

= [{<Display options>*}] <String value>; 

= [{<Query options>*}] <String value>; 

= [{<Query options>*}] <String value>; 

Conditions: 
<Condition> <Boolean> 

<String value> eq <String value> 

<String value> neq <String value> 

<Reg exp> in <String value>      j    <String vaiue> =" <Reg exp> 

<Reg exp> nin <String value>     |    <String value> /~ <Reg exp> 

(<Condition>) or (<Condition>)    |    (<Condition>) || (<Condition>) 

(<Condition>) and (<Condition>)    |    (<Condition>) && (<Condition>) 



APPENDIX B.   SODABOTL BNF SPECIFICATION 73 

Data Types: 

<String value> 

<String> 

<Variable> 

<Filename> 

<Sub name> 

<Agent name> 

<Library name> 

<Arg list> 

<Multline string> 

<Rich string> 

<Simple string> 

<Reg exp> 

<String>     j    <Variable> 

<Multiline string>     j    <Simple string> 

$<Simple string> 

[/] <Simple string> [/] [<Filename>]      |    <Variable> 

<Simple string> 

<Simple string> 

<Simple string> 

<String value> [, <Arg list>] 

<Rich string> \n [<Multiline string>] 

All characters except \n 

[a-z, A-Z, 0-9, .]* 

See [Wall and Schwartz, 1990, p25]. 

Mail Filter Specification: 

<Mail specification 

<Field> 

<Field>: /<Reg exp>/ [;<Mail Specification>] 

to   | cc   | bcc   | from   | sender   | reply-to   | 

return-receipt-to   ! errors-to   j date   j 

return-header   j message-id  | subject   | status   j 

newsgroups   j followup-to 

Agent Input Specification: 

<Input> 

<Input spec> 

<Input type> 

=     Required input {<Input spec>} 

=     <Rich string>: <Input type> 

=     <Rich string>   | *name   | *username   \ *filename 

*date   | Hirne   \ *address  \ *hosi   \ *number 



Bibliography 

[Brooks, 1991] Brooks, Rodney. Intelligence without representation. Artificial Intel- 

ligence, 47:139-160. 1991. 

[Coen, 1994]  Coen, Michael. Letter to the Editor. AI Magazine. Summer 1994. 

[Dent et al, 1992] Dent, Lisa; Boticario, Jesus; McDermott, John; Mitchell, Tom; 

and Zabowski, David. A personal learning apprentice. In Proceedings of the Tenth 

National Conference on Artificial Intelligence, AAAI-92, San Jose, CA. p96-103. 

1992. 

[Dougherty, 1990] Dougherty, Dale, sed k awk. O'Reilly Associates. Sebastopol, CA. 

1990 

[Doyle et al, 1991] Doyle, Jon; Shoham, Yoav; and Wellman, Michael. A logic of 

relative desire. In Z.W. Ras and M. Zemankova (eds.) Methodologies for Intelligent 

Systems, Springer-Verlag, Berlin. p!6-31. 1991. 

[Etzioni et al, 1992a] Etzioni, Oren; Hanks, Steve; Weld, Daniel; Draper, Denise; 

Lesh, Neal; and Williamson, Mike. An approach to planning with incomplete 

information. In Proceedings of the Third International Conference on Principles 

of Knowledge Representation and Reasoning, KR-92, Cambridge, MA. pll5-125. 

1992. 

74 



BIBLIOGRAPHY 75 

[Etzioni and Segal, 1992] Etzioni, Oren and Segal, Richard. Sofbots as testbeds for 

machine learning. In Working Notes of the AAAI Spring Symposium on Knowledge 

Assimilation, Menlo Park, CA. 1992. 

[Etzioni et al, 1993] Etzioni, Oren; Levy, Henry; Segal, Richard; and Thekkath, 

Chandramohan. OS Agents: Using AI Techniques in the Operating System En- 

vironment. Technical Report 93-04-04. University of Washington, Seattle, WA. 

1993. 

[Etzioni, 1993] Etzioni, Oren. Intelligence without Robots: A Reply to Brooks. In AI 

Magazine, Winter, 1993. 

[Etzioni et al, 1994] Etzioni, Oren; Lesh, Neal; and Segal, Richard. Building softbots 

for Unix (Preliminary Report). In Working Notes of the AAAI Spring Syposium 

on Software Agents, Stanford, CA. p9-16. 1994. 

[Genesereth and Singh, 1994] Genesereth, Michael and Narinder Singh. A Knowledge 

Sharing Approach to Software Interoperation. Unpublished draft. 1994. 

[Genesereth and Ketchpel, 1994] Genesereth, Michael and Ketchpel, Steven. Soft- 

ware Agents. CACM - Special Issue on Intelligent Agents. 37:7. 1994. 

[Genesereth 1994] Genesereth, Michael. MIT AI Laboratory Revolving Seminar. 

February 3, 1994. 

[Horton, 1983] Horton, Mark. Standard for interchange of Usenet messages. Internet 

Request for Comment (RFC) 850. 1983. 

[Kahn and Cerf, 1988] Kahn, Robert and Cerf, Vinton. An open architecture for a 

digital library system and a plan for its development. Technical report. Corporation 

for National Research Initiatives. 1988. 



BIBLIOGRAPHY 76 

[Kautz et al, 1994] Kautz, Henry; Selman, Bart; Coen, Michael; Ketchpel, Steven. 

An experiment in the design of software agents. Proceedings of the Twelfth National 

Conference on Artificial Intelligence, AAAI-94, Seattle, WA. 1994. 

[Knoblock and Arens, 1994] Knoblock, Craig and Aren, Yigal. An architecture for 

information retrieval agents. In Working Notes of the AAAI Spring Syposium on 

Software Agents, Stanford, CA. p49-56. 1994. 

[Kozierok, 1993] Kozierok, Robyn. A learning approach to knowledge acquisition for 

intelligent interface agents. Technical Report 93-01, Learning and Common Sense 

Group, MIT Media Lab. 1993. 

[Krishnamurthy and Rosenblum, 1992] Krishnamurthy, Balachander and Rosen- 

blum, David. Yeast: a general purpose event-action system. AT&T Bell Labs Tech- 

nical Memorandum. 1992. 

[Lansky, 1994] Lansky, Amy. A data analysis assistant. In Working Notes of the AAAI 

Spring Syposium on Software Agents, Stanford, CA. p57-63. 1994. 

[Maes, 1990] Maes, Pattie (ed). Designing Autonomous Agents, MIT Press, Cam- 

bridge, 1990. 

[Maes and Kozierok, 1993] Maes, Pattie and Kozierok, Robyn. Learning interface 

agents. In Proceedings of the Eleventh National Conference on Artificial Intelli- 

gence, AAAI-93, Washington D.C., p459-464. 1993. 

[Maes, 1994] Maes, Pattie. Social interface agents: acquiring competence by learning 

from users and other agents. In Working Notes of the AAAI Spring Syposium on 

Software Agents, Stanford, CA. p71-78. 1994. 

[Neches et al, 1991] Neches, Robert; Fikes, Richard; Finin, Tom; Gruber, Thomas; 

Patil, Ramesh; Senator, Tod; and Swartout, William. Enabling Technology for 

Knowledge Sharing. In AI Magazine, Fall, 1991. 



BIBLIOGRAPHY 77 

[Rosenschein, 1993] Rosenschein, Jeffrey. Negotiation mechanisms for multi-agent 

systems. In Proceedings of the Thirteenth International Joint Conference on Arti- 

ficial Intelligence, Chambery, France. p792-799. 1993. 

[Sheth, 1994] Sheth, Beerud. Adaptive Agents for Information Processing. SM Thesis. 

MIT. Cambridge, MA. 1994. 

[Shoham, 1992] Shoham, Yoav. Agent Alpha Programming Overview. 1992. 

[Shoham, 1993] Shoham, Yoav. Agent oriented programming. Artificial Intelligence, 

60:51-92. 1993. 

[Stein, 1994] Stein, Lynn. Private communication. (Also from comments made during 

the third discussion section at the A A AI 1994 Spring Syposium on Software Agents. 

Patrick Hayes made a similar statement.) 

[Torrance and Viola, 1991] Torrance, Mark and Viola, Paul. The AGENTO Manual. 

Technical Report STAN-CS-91-1389. Stanford University Department of Computer 

Science. Stanford, CA. 1991. 

[Vere and Bickmore, 1990] Vere, S and Bickmore, T. A basic agent. Computational 

Intelligence, 6(1). 1990. 

[Waldrop, 1990] Waldrop, M. Mitchell. Learning to drink from a fire hose. Science, 

v248, pg 674. 1990. 

[Wall and Schwartz, 1990] Wall, Larry and Schwartz, Randall. Programming Perl. 

O'Reilly k Associates. Sebastopol, CA. 1990 

[Wayner, 1994] Wayner, Peter. Agents away. Byte, pi 13-118. May, 1994. 

[Zlotkin and Roesnschein, 1994] Zlotkin, Gilad, and Rosenschein, Jeffrey. Coalition, 

cryptography, and stability:  mechanisms for coalition formation in task oriented 



BIBLIOGRAPHY 78 

domains. In  Working Notes of the AAAI Spring Syposium on Software Agents, 

Stanford, CA. p87-94. 1994. 


